Fourier级数
Fourier级数
函数的Fourier级数的展开
Euler--Fourier公式
我们探讨这样一个问题:
假设\(f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{k}coskt+b_{k}sinkt\)
Euler--Fourier公式:
\(a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx\)
\(a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{d} x, \quad n=0,1,2, \cdots\)
\(b_{n}=\frac{1}{\pi} \int_{-x}^{\pi} f(x) \sin n x \mathrm{d} x, \quad n=1,2, \cdots\)
\[\int_{-\pi}^{\pi}cosmx=0\]
\[\int_{-\pi}^{\pi}sinmx=0\]
\[\int_{-\pi}^{\pi}sinnxcosmx=0\]
\[\int_{-\pi}^{\pi}cosnxcosmx=0(n \neq m)\]
\[\int_{-\pi}^{\pi}cosnxcosmx=\pi(n = m)\](n=m时,cos0x=1,\(\rightarrow \frac{1}{2} \int_{-\pi}^{\pi}1dx\))
\[\int_{-\pi}^{\pi}sinnxcosmx=\pi(n = m)\]
利用三角公式:
\[cosmtcosnt=\frac{1}{2}[cos(m-n)t+cos(m+n)t]\]
正弦级数和余弦级数
注意奇函数如果在零点有定义的话,\(f(0)=0\)
\(f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} (a_{n}cosnx+b_{n}sinnx)\)
正弦级数表达式:\[f(x)=\sum_{n=1}^{\infty}b_{n}sinnx\]
同样余弦级数:\[f(x)=\frac{a_{0}}{2}+\sum_{n=0}^{\infty}a_{n}cosnx\]
Fourier级数习题:
1.1f(t)=\(\frac{A}{2}(sint+|sint|)\)展开的Fourier级数
(\(\int_{-\pi}^{\pi}|sint|dt=4\))
\(a_{0}=4 \times \frac{A}{2}\)
\(a_{n}\)=
\(\int_{-\pi}^{\pi}|sint|cosntdt\)
这里我们操作一下:\[a_{n}=\int_{0}^{\pi}sintcosntdt\]
学会利用三角变换:
\[sintcosnt=\frac{1}{2}[sin(t-nt)+sin(t+nt)]\]
也可以用分部积分法来计算
\[
\frac{1}{n} \sin t \sin n t \bigg|_{0}^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos t \sin n t
\]
\[
\frac{n^{2}-1}{n^{2}} \int_{0}^{\pi} \sin t \cos n t d t=\left.\frac{1}{n} \sin t \sin n t\right|_{0} ^{\pi}+\left.\frac{1}{n} \cos t \cos n t\right|_{0} ^{\pi}
\]
\(a_{n}=\int_{0}^{\pi}sintcosntdt=-\frac{2(cos(n\pi+1))}{n^2-1}\)}(详细写的话,分为奇数和偶数)
\[\int_{0}^{\pi}sintcosntdt=-\frac{2(cos(n\pi+1))}{n^2-1}\]
\(b_{n}\)=
{\(\int_{-\pi}^{\pi}sintsinntdt+|sint|sinntdt\)}
注意\(\int_{-\pi}^{\pi}|sint|sinntdt\)=0(偶函数)
\[\int_{-\pi}^{\pi}sintsinntdt=-\frac{2sin(\pi n)}{n^2 -1}\](n分奇偶数来考虑)
f(t)=\(A|sin t|\)
与1的类似:注意\(a_{n}=0\)
\[ f(x)=\left\{
\begin{aligned}
1 \quad x\in[-\pi,0),\\
0 \quad x\in[0,\pi)
\end{aligned}
\right.
\]的Fourier级数
\(f(x)=sgn(x),x \in(-\pi,\pi)\)展开成Fourier级数
sgn(x)为奇函数 \(a_{0}=0,a_{n}=0\)
利用正弦公式\(b_{n}=\int_{-\pi}^{0}-sin(nt)dt=\frac{1-cos(\pi n)}{n}\)
\(f(x)=\frac{x^{2}}{2}-\pi^{2}\)
\(f(x)\)为偶函数,考虑\(a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}f(x)cosnxdx\)\
\(\frac{1}{\pi} \int_{-\pi}^{\pi}(\frac{x^{2}}{2}-\pi^{2})cosnxdx\)
先考虑\(\int_{-\pi}^{\pi} \pi^{2}cosnxdx\),由于对应的原函数sinnx里面\(sin n\pi =0\)\
接下来我们考虑\(\int_{-\pi}^{\pi} \frac{x^{2}}{2}cosnxdx\)
我们利用分部积分:\(sinnx \frac{x^2}{2} \bigg|_{-\pi}^{\pi}-\frac{1}{n}\frac{1}{\pi}\int_{-\pi}^{\pi}xsinnxdx\)
\(\int_{-\pi}^{\pi}xsinnxdx\)我们采用分部积分\(-\frac{1}{n}xcosnx \bigg|_{\pi}^{\pi}=\frac{2cosnx}{n^{2}}\)
\[ f(x)=\left\{
\begin{aligned}
ax \quad x\in[-\pi,0),\\
bx \quad x\in[0,\pi)
\end{aligned}
\right.
\]
正弦级数与余弦级数的习题:
\(f(x)=x(x \in[0,\pi])\)分别展开成正弦级数和余弦级数
正弦级数:
\(f(x)=e^{-2x},x\in[0,\pi]\)
\(b_{n}=\) {\(\int_{0}^{\pi}e^{-2x}sinnx dx\)}
=\(\frac{n-e^{-2 \pi}ncos(\pi n)}{n^2+4}\)
\[ f(x)=\left\{
\begin{aligned}
cos\frac{\pi x}{2} \quad x\in[0,1),\\
0 \quad x\in[1,2]
\end{aligned}
\right.
\]
余弦级数:
\(f(x)=e^{x},x \in [0,\pi]\)
\(f(x)=x-\frac{\pi}{2}+|x-\frac{\pi}{2}|,x \in [0,\pi]\)
Fourier级数的收敛判别法
Fourier级数的性质
Fourier级数的更多相关文章
- 数理方程:Fourier级数
更新:25 MAR 2016 对于周期函数(周期为\(2\pi\))或定义在\([-\pi,\pi]\)上的函数\(f(x)\),可以展开为* \(\large f(x)=\dfrac{a_0}{2} ...
- Fourier分析基础(一)——Fourier级数
前言 傅立叶分析的作用是把一个函数变成一堆三角函数的和的形式,也就是分解.首先引入的是傅立叶级数,Fourier级数的作用是把函数变为可数无限个三角函数的和,而且这些三角函数的频率都是某个基频的整数倍 ...
- 数理方程:Fourier变换与卷积
更新:1 APR 2016 关于傅里叶级数参看数理方程:Fourier级数 Fourier变换: 对于满足Dirichlet条件的函数\(f(t)\)在其连续点处定义 \(F(\omega)=\int ...
- 为什么Fourier分析?
本文旨在给出Fourier分析的几个动机. 目录 波动方程 热导方程 Lapalce变换 求和公式 表示论 特征理论 参考资料 波动方程 考虑一维的波动方程最简单的边值问题$$u(x,t), x\in ...
- 【转载】Ansys中的阻尼
原文地址:http://www.cnblogs.com/ylhome/archive/2009/08/26/1554195.html ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何 ...
- 信号处理——Hilbert端点效应浅析
作者:桂. 时间:2017-03-05 19:29:12 链接:http://www.cnblogs.com/xingshansi/p/6506405.html 声明:转载请注明出处,谢谢. 前言 ...
- 研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>
快速傅里叶变换及其C程序 <快速傅里叶变换及其C程序>是中国科学技术大学出版社出版的.本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义.存在条件及其性质,离散傅里叶 ...
- 【转】vc api 录音
一.数字音频基础知识 Fourier级数: 任何周期的波形可以分解成多个正弦波,这些正弦波的频率都是整数倍.级数中其他正线波的频率是基础频率的整数倍.基础频率称为一级谐波. PCM: pulse co ...
- $\frac{\pi}{\sin p\pi}$
1.把 $f(x)=\cos px$ 在 $[-\pi,\pi]$ 上展开为 Fourier 级数. \[\cos px=\frac{\sin p\pi}{\pi}(\frac{1}{p}+\sum_ ...
随机推荐
- JXCPC 试题册
JXCPC 试题册 Input file: standard input Output file: standard output Time limit: 1s Memory limit: 256 m ...
- keil5最新破解教程(可以使用到2032年哦!):
keil5最新破解教程(可以使用到2032年哦!): 首先附上破解软件下载链接:https://github.com/lzfyh2017/keil5- 相信不少小伙伴使用的keil5都快要到期了,那么 ...
- delphpi tcp 服务和客户端 例子
//服务器端unit Unit1; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, ...
- Aras Innovator客户端批量下载关联文件
<button onclick="btnDownload();" id="downfilebtn">批量下载关联文件</button> ...
- spring中的Filter使用
https://blog.csdn.net/bibiwannbe/article/details/81302920
- 吴裕雄--天生自然Linux操作系统:Linux 简介
Linux 内核最初只是由芬兰人林纳斯·托瓦兹(Linus Torvalds)在赫尔辛基大学上学时出于个人爱好而编写的. Linux 是一套免费使用和自由传播的类 Unix 操作系统,是一个基于 PO ...
- 十大经典排序算法(Javascript实现)
前言 总括: 本文结合动图详细讲述了十大经典排序算法用Javascript实现的过程. 原文博客地址:十大经典排序算法 公众号:「菜鸟学前端」,回复「666」,获取一揽子前端技术书籍 人生有情泪沾衣, ...
- CodeForces 998B Cutting(贪心)
https://codeforces.com/problemset/problem/998/B 简单贪心题 代码如下: #include <stdio.h> #include <st ...
- 树莓派docker搭建
树莓派上 Docker 的安装和使用 Docker 是一个开源的应用容器引擎,可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟 ...
- Monkey日常测试命令
一,LOG日志抓取 adb logcat -b main -v time >log.txt --实时日志打印 adb shell monkey -p com.eeyescloud.eeyes ...