Fourier级数

函数的Fourier级数的展开

Euler--Fourier公式

我们探讨这样一个问题:
假设\(f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{k}coskt+b_{k}sinkt\)

Euler--Fourier公式:

\(a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx\)
\(a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{d} x, \quad n=0,1,2, \cdots\)
\(b_{n}=\frac{1}{\pi} \int_{-x}^{\pi} f(x) \sin n x \mathrm{d} x, \quad n=1,2, \cdots\)
\[\int_{-\pi}^{\pi}cosmx=0\]
\[\int_{-\pi}^{\pi}sinmx=0\]
\[\int_{-\pi}^{\pi}sinnxcosmx=0\]
\[\int_{-\pi}^{\pi}cosnxcosmx=0(n \neq m)\]
\[\int_{-\pi}^{\pi}cosnxcosmx=\pi(n = m)\](n=m时,cos0x=1,\(\rightarrow \frac{1}{2} \int_{-\pi}^{\pi}1dx\))
\[\int_{-\pi}^{\pi}sinnxcosmx=\pi(n = m)\]
利用三角公式:
\[cosmtcosnt=\frac{1}{2}[cos(m-n)t+cos(m+n)t]\]

正弦级数和余弦级数

注意奇函数如果在零点有定义的话,\(f(0)=0\)
\(f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} (a_{n}cosnx+b_{n}sinnx)\)
正弦级数表达式:\[f(x)=\sum_{n=1}^{\infty}b_{n}sinnx\]
同样余弦级数:\[f(x)=\frac{a_{0}}{2}+\sum_{n=0}^{\infty}a_{n}cosnx\]

Fourier级数习题:

1.1f(t)=\(\frac{A}{2}(sint+|sint|)\)展开的Fourier级数
(\(\int_{-\pi}^{\pi}|sint|dt=4\))
\(a_{0}=4 \times \frac{A}{2}\)
\(a_{n}\)=
\(\int_{-\pi}^{\pi}|sint|cosntdt\)
这里我们操作一下:\[a_{n}=\int_{0}^{\pi}sintcosntdt\]
学会利用三角变换:
\[sintcosnt=\frac{1}{2}[sin(t-nt)+sin(t+nt)]\]
也可以用分部积分法来计算
\[
\frac{1}{n} \sin t \sin n t \bigg|_{0}^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos t \sin n t
\]
\[
\frac{n^{2}-1}{n^{2}} \int_{0}^{\pi} \sin t \cos n t d t=\left.\frac{1}{n} \sin t \sin n t\right|_{0} ^{\pi}+\left.\frac{1}{n} \cos t \cos n t\right|_{0} ^{\pi}
\]
\(a_{n}=\int_{0}^{\pi}sintcosntdt=-\frac{2(cos(n\pi+1))}{n^2-1}\)}(详细写的话,分为奇数和偶数)
\[\int_{0}^{\pi}sintcosntdt=-\frac{2(cos(n\pi+1))}{n^2-1}\]
\(b_{n}\)=
{\(\int_{-\pi}^{\pi}sintsinntdt+|sint|sinntdt\)}
注意\(\int_{-\pi}^{\pi}|sint|sinntdt\)=0(偶函数)
\[\int_{-\pi}^{\pi}sintsinntdt=-\frac{2sin(\pi n)}{n^2 -1}\](n分奇偶数来考虑)
f(t)=\(A|sin t|\)
与1的类似:注意\(a_{n}=0\)
\[ f(x)=\left\{
\begin{aligned}
1 \quad x\in[-\pi,0),\\
0 \quad x\in[0,\pi)
\end{aligned}
\right.
\]的Fourier级数
\(f(x)=sgn(x),x \in(-\pi,\pi)\)展开成Fourier级数
sgn(x)为奇函数 \(a_{0}=0,a_{n}=0\)
利用正弦公式\(b_{n}=\int_{-\pi}^{0}-sin(nt)dt=\frac{1-cos(\pi n)}{n}\)
\(f(x)=\frac{x^{2}}{2}-\pi^{2}\)
\(f(x)\)为偶函数,考虑\(a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}f(x)cosnxdx\)\
\(\frac{1}{\pi} \int_{-\pi}^{\pi}(\frac{x^{2}}{2}-\pi^{2})cosnxdx\)
先考虑\(\int_{-\pi}^{\pi} \pi^{2}cosnxdx\),由于对应的原函数sinnx里面\(sin n\pi =0\)\
接下来我们考虑\(\int_{-\pi}^{\pi} \frac{x^{2}}{2}cosnxdx\)
我们利用分部积分:\(sinnx \frac{x^2}{2} \bigg|_{-\pi}^{\pi}-\frac{1}{n}\frac{1}{\pi}\int_{-\pi}^{\pi}xsinnxdx\)
\(\int_{-\pi}^{\pi}xsinnxdx\)我们采用分部积分\(-\frac{1}{n}xcosnx \bigg|_{\pi}^{\pi}=\frac{2cosnx}{n^{2}}\)
\[ f(x)=\left\{
\begin{aligned}
ax \quad x\in[-\pi,0),\\
bx \quad x\in[0,\pi)
\end{aligned}
\right.
\]
正弦级数与余弦级数的习题:
\(f(x)=x(x \in[0,\pi])\)分别展开成正弦级数和余弦级数
正弦级数:
\(f(x)=e^{-2x},x\in[0,\pi]\)
\(b_{n}=\) {\(\int_{0}^{\pi}e^{-2x}sinnx dx\)}
=\(\frac{n-e^{-2 \pi}ncos(\pi n)}{n^2+4}\)
\[ f(x)=\left\{
\begin{aligned}
cos\frac{\pi x}{2} \quad x\in[0,1),\\
0 \quad x\in[1,2]
\end{aligned}
\right.
\]
余弦级数:
\(f(x)=e^{x},x \in [0,\pi]\)
\(f(x)=x-\frac{\pi}{2}+|x-\frac{\pi}{2}|,x \in [0,\pi]\)

Fourier级数的收敛判别法

Fourier级数的性质

Fourier级数的更多相关文章

  1. 数理方程:Fourier级数

    更新:25 MAR 2016 对于周期函数(周期为\(2\pi\))或定义在\([-\pi,\pi]\)上的函数\(f(x)\),可以展开为* \(\large f(x)=\dfrac{a_0}{2} ...

  2. Fourier分析基础(一)——Fourier级数

    前言 傅立叶分析的作用是把一个函数变成一堆三角函数的和的形式,也就是分解.首先引入的是傅立叶级数,Fourier级数的作用是把函数变为可数无限个三角函数的和,而且这些三角函数的频率都是某个基频的整数倍 ...

  3. 数理方程:Fourier变换与卷积

    更新:1 APR 2016 关于傅里叶级数参看数理方程:Fourier级数 Fourier变换: 对于满足Dirichlet条件的函数\(f(t)\)在其连续点处定义 \(F(\omega)=\int ...

  4. 为什么Fourier分析?

    本文旨在给出Fourier分析的几个动机. 目录 波动方程 热导方程 Lapalce变换 求和公式 表示论 特征理论 参考资料 波动方程 考虑一维的波动方程最简单的边值问题$$u(x,t), x\in ...

  5. 【转载】Ansys中的阻尼

    原文地址:http://www.cnblogs.com/ylhome/archive/2009/08/26/1554195.html ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何 ...

  6. 信号处理——Hilbert端点效应浅析

    作者:桂. 时间:2017-03-05  19:29:12 链接:http://www.cnblogs.com/xingshansi/p/6506405.html 声明:转载请注明出处,谢谢. 前言 ...

  7. 研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>

    快速傅里叶变换及其C程序 <快速傅里叶变换及其C程序>是中国科学技术大学出版社出版的.本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义.存在条件及其性质,离散傅里叶 ...

  8. 【转】vc api 录音

    一.数字音频基础知识 Fourier级数: 任何周期的波形可以分解成多个正弦波,这些正弦波的频率都是整数倍.级数中其他正线波的频率是基础频率的整数倍.基础频率称为一级谐波. PCM: pulse co ...

  9. $\frac{\pi}{\sin p\pi}$

    1.把 $f(x)=\cos px$ 在 $[-\pi,\pi]$ 上展开为 Fourier 级数. \[\cos px=\frac{\sin p\pi}{\pi}(\frac{1}{p}+\sum_ ...

随机推荐

  1. 【每日Scrum】第八天冲刺

    一.计划会议内容 继续昨天的设计 二.任务看板 任务看板 已完成:登录与个人界面布局实现 进行中:UI设计美化,,地图主界面 待进行:功能整合,连接数据库 三.scrum讨论照片 四.产品的状态 无 ...

  2. CodeForces 1000C Covered Points Count(区间线段覆盖问题,差分)

    https://codeforces.com/problemset/problem/1000/C 题意: 有n个线段,覆盖[li,ri],最后依次输出覆盖层数为1~n的点的个数. 思路: 区间线段覆盖 ...

  3. 代码杂谈-or符号

    看到别人的代码里用了 or, 有点巧用. 记录一下. def func(a,b, context=None): # .... ctx = context or global_context() # . ...

  4. PAT Advanced 1115 Counting Nodes in a BST (30) [⼆叉树的遍历,BFS,DFS]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  5. 苹果智能AR挡风玻璃靠谱吗?

    在过去十年,外界给苹果的形象一直是"伟大的硬件公司",他们的产品在外观方面往往比内涵更加引人注目,兼具娱乐性和艺术性, iPhone/iPad/iPod莫不如此,所以,当坊间传闻苹 ...

  6. MVPR下的PHP分页教程

    这个PHP分页其实不难,现在就开始看看核心思路吧. 我习惯从最底层开始看起. 1. 首先用LIMIT偏移QUERY的指针 /* * get hot post by current page * @pa ...

  7. TF分布式问题

    碰到一个没解决的问题. 用tensorflow 分布式异步更新模式训练模型, 模型中带正则项, 每个batch的损失函数为 \[\lambda \|W\|_1 + \frac 1 {N_j} \sum ...

  8. c# 之Enum--枚举

    枚举  收藏的博文连接 枚举类型声明为一组相关的符号常数定义了一个类型名称.枚举用于“多项选择”场合,就是程序运行时从编译时已经设定的固定数目的“选择”中做出决定. 枚举类型(也称为枚举):该类型可以 ...

  9. JavaEE--分布式对象

    参考:http://blog.csdn.net/smcwwh/article/details/7080997 1.客户与服务器的角色 所有分布式编程技术的基本思想都很简单:客户计算机产生一个请求,然后 ...

  10. Linux 安装python3.x步骤

    本文转发自博客园非真的文章,内容略有改动 本文已收录至博客专栏linux安装各种软件及配置环境教程中 linux系统本身默认安装有2.x版本的python,版本x根据不同版本系统有所不同,通过pyth ...