hdu 3359 Kind of a Blur (高斯消元 浮点型)
题意:
H * W (W,H <= 10) 的矩阵A的某个元素A[i][j],从它出发到其他点的曼哈顿距离小于等于D的所有值的和S[i][j]除上可达点的数目,构成了矩阵B。给定矩阵B,求矩阵A。
分析:
将所有矩阵A的元素看成自变量,一共有H*W个变量,每个矩阵B的元素是由这些变量组合而成的,对于固定的B[i][j],曼哈顿距离在D以内的A[x][y]的系数为1,其它为0,这样就变成了求H*W个变量和H*W个方程的线性方程组,高斯消元求解。这题数据量比较小,所以直接采用浮点数的高斯消元即可,需要注意的是,浮点数消元的时候为了避免精度误差,每次找最大的行,乘上一个小于1的系数进行消元,这样可以把误差降到最小。
本来很快就搞定的,但是脑残了,总是pE,后来又wa,一定要把b[][]变成浮点数,才行,不然会wa 有误差。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define LL __int64
#define eps 1e-8
const int maxn = +;
using namespace std;
int equ, var;
double a[maxn][maxn], x[maxn]; int Gauss()
{
int i, j, k, max_r, col;
double tmp;
col = ; for(k = ; k<equ && col<var; k++, col++)
{
max_r = k;
for(i = k+; i < equ; i++)
if(fabs(a[i][col])-fabs(a[max_r][col]) > eps)
max_r = i; if(max_r != k)
for(j = k; j < var+; j++)
swap(a[k][j], a[max_r][j]); if(fabs(a[k][col]) < eps)
{
k--;
continue;
}
for(i = k+; i < equ; i++)
{
if(fabs(a[i][col]) > eps)
{
double t = a[i][col]/a[k][col];
a[i][col] = 0.0; for(j = col; j < var+; j++)
a[i][j] -= a[k][j]*t;
}
}
}
for(i = var-; i >= ; i--)
{
if(fabs(a[i][i]) < eps) continue;
tmp = a[i][var];
for(j = i+; j < var; j++)
if(a[i][j] != )
tmp -= a[i][j]*x[j]; //if(tmp%a[i][i] != 0) return -2;
x[i] = tmp/a[i][i];
}
return ;
}
int mht(int x1, int y1, int x2, int y2)
{
return abs(x1-x2)+abs(y1-y2);
} int main()
{
int n, m, d;
int f = , i, j, k, l;
double b[maxn][maxn];
while(cin>>m>>n>>d)
{
if(m==&&n==&&d==) break;
if(f)
cout<<endl;
f = ;
equ = n*m;
var = n*m;
memset(a, , sizeof(a));
memset(x, , sizeof(x));
for(i = ; i < n; i++)
for(j = ; j < m; j++)
cin>>b[i][j];
for(i = ; i < n; i++)
for(j = ; j < m; j++)
for(k = ; k < n; k++)
for(l = ; l < m; l++)
if(mht(i, j, k, l) <= d)
{
a[i*m+j][k*m+l] = ;
a[i*m+j][n*m] += b[i][j];
}
Gauss();
for(i = ; i < n; i++)
{
for(j = ; j < m; j++)
printf("%8.2lf", x[i*m+j]);
cout<<endl;
}
}
return ;
}
hdu 3359 Kind of a Blur (高斯消元 浮点型)的更多相关文章
- HDU 3359 Kind of a Blur(高斯消元)
题意: H * W (W,H <= 10) 的矩阵A的某个元素A[i][j],从它出发到其他点的曼哈顿距离小于等于D的所有值的和S[i][j]除上可达点的数目,构成了矩阵B.给定矩阵B,求矩阵A ...
- HDU 5833 Zhu and 772002 (高斯消元)
Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...
- 2016ACM/ICPC亚洲区沈阳站H - Guessing the Dice Roll HDU - 5955 ac自动机+概率dp+高斯消元
http://acm.hdu.edu.cn/showproblem.php?pid=5955 题意:给你长度为l的n组数,每个数1-6,每次扔色子,问你每个串第一次被匹配的概率是多少 题解:先建成ac ...
- HDU 5119 Happy Matt Friends(DP || 高斯消元)
题目链接 题意 : 给你n个数,让你从中挑K个数(K<=n)使得这k个数异或的和小于m,问你有多少种异或方式满足这个条件. 思路 : 正解据说是高斯消元.这里用DP做的,类似于背包,枚举的是异或 ...
- HDU 5833 Zhu and 772002 (数论+高斯消元)
题目链接 题意:给定n个数,这n个数的素因子值不超过2000,从中取任意个数使其乘积为完全平方数,问有多少种取法. 题解:开始用素筛枚举写了半天TLE了,后来队友说高斯消元才想起来,果断用模板.赛后又 ...
- HDU3359 Kind of a Blur(高斯消元)
建立方程后消元 #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring& ...
- HDU 5833 Zhu and 772002(高斯消元)
题意:给n个数,从n个数中抽取x(x>=1)个数,这x个数相乘为完全平方数,求一共有多少种取法,结果模1000000007. 思路:每个数可以拆成素数相乘的形式,例如: x1 2=2^1 * 3 ...
- hdu 3992 AC自动机上的高斯消元求期望
Crazy Typewriter Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 5544 Ba Gua Zhen dfs+高斯消元
Ba Gua Zhen Problem Description During the Three-Kingdom period, there was a general named Xun Lu wh ...
随机推荐
- 微软职位内部推荐-Principal Software Developer
微软近期Open的职位: Contact Person: Winnie Wei (wiwe@microsoft.com ) Work Location: Suzhou/Beijing News is ...
- java多线程为什么要用while而不是if
对于java多线程的wait()方法,我们在jdk1.6的说明文档里可以看到这样一段话 从上面的截图,我们可以看出,在使用wait方法时,需要使用while循环来判断条件十分满足,而不是if,那么我们 ...
- Codeforces Round #130 (Div. 2) A. Dubstep
题目链接: http://codeforces.com/problemset/problem/208/A A. Dubstep time limit per test:2 secondsmemory ...
- MemSQL Start[c]UP 2.0 - Round 1
A. Eevee http://codeforces.com/contest/452/problem/A 字符串水题 #include<cstdio> #include<cstrin ...
- 堆栈中的EIP EBP ESP
EIP,EBP,ESP都是系统的寄存器,里面存的都是些地址. 为什么要说这三个指针,是因为我们系统中栈的实现上离不开他们三个. 我们DC上讲过栈的数据结构,主要有以下特点: 后进先处.(这个强调 ...
- PHP对XML文件操作之属性与方法讲解
DOMDocument相关的内容. 属性: Attributes 存储节点的属性列表(只读) childNodes 存储节点的子节点列表(只读) dataType 返回此节点的数据类型 Definit ...
- uva 11235
数据结构 RMQ算法 左右左右 写得有点晕了 ..... /****************************************************************** ...
- cojs 白树黑 黑树白 题解报告
黑树白 首先如果不是强制在线,这个题用莫队+树状数组就可以在O(n*sqrt(n)*log(n))的时间内搞定 如果没有修改操作,可以直接上主席树就可以辣 我们考虑修改操作,某一个修改操作对于某一个查 ...
- VC error LNK2005 解决办法
error LNK2005: "int __cdecl VerifyVMR9(void)" (?VerifyVMR9@@YAHXZ) 解决办法 在 属性->配置属性-> ...
- java 泛型类
Java泛型中的标记符含义: E - Element (在集合中使用,因为集合中存放的是元素) T - Type(Java 类) K - Key(键) V - Value(值) N - Numbe ...