题目链接

题意:

H * W (W,H <= 10) 的矩阵A的某个元素A[i][j],从它出发到其他点的曼哈顿距离小于等于D的所有值的和S[i][j]除上可达点的数目,构成了矩阵B。给定矩阵B,求矩阵A。

分析:

将所有矩阵A的元素看成自变量,一共有H*W个变量,每个矩阵B的元素是由这些变量组合而成的,对于固定的B[i][j],曼哈顿距离在D以内的A[x][y]的系数为1,其它为0,这样就变成了求H*W个变量和H*W个方程的线性方程组,高斯消元求解。这题数据量比较小,所以直接采用浮点数的高斯消元即可,需要注意的是,浮点数消元的时候为了避免精度误差,每次找最大的行,乘上一个小于1的系数进行消元,这样可以把误差降到最小。

本来很快就搞定的,但是脑残了,总是pE,后来又wa,一定要把b[][]变成浮点数,才行,不然会wa 有误差。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define LL __int64
#define eps 1e-8
const int maxn = +;
using namespace std;
int equ, var;
double a[maxn][maxn], x[maxn]; int Gauss()
{
int i, j, k, max_r, col;
double tmp;
col = ; for(k = ; k<equ && col<var; k++, col++)
{
max_r = k;
for(i = k+; i < equ; i++)
if(fabs(a[i][col])-fabs(a[max_r][col]) > eps)
max_r = i; if(max_r != k)
for(j = k; j < var+; j++)
swap(a[k][j], a[max_r][j]); if(fabs(a[k][col]) < eps)
{
k--;
continue;
}
for(i = k+; i < equ; i++)
{
if(fabs(a[i][col]) > eps)
{
double t = a[i][col]/a[k][col];
a[i][col] = 0.0; for(j = col; j < var+; j++)
a[i][j] -= a[k][j]*t;
}
}
}
for(i = var-; i >= ; i--)
{
if(fabs(a[i][i]) < eps) continue;
tmp = a[i][var];
for(j = i+; j < var; j++)
if(a[i][j] != )
tmp -= a[i][j]*x[j]; //if(tmp%a[i][i] != 0) return -2;
x[i] = tmp/a[i][i];
}
return ;
}
int mht(int x1, int y1, int x2, int y2)
{
return abs(x1-x2)+abs(y1-y2);
} int main()
{
int n, m, d;
int f = , i, j, k, l;
double b[maxn][maxn];
while(cin>>m>>n>>d)
{
if(m==&&n==&&d==) break;
if(f)
cout<<endl;
f = ;
equ = n*m;
var = n*m;
memset(a, , sizeof(a));
memset(x, , sizeof(x));
for(i = ; i < n; i++)
for(j = ; j < m; j++)
cin>>b[i][j];
for(i = ; i < n; i++)
for(j = ; j < m; j++)
for(k = ; k < n; k++)
for(l = ; l < m; l++)
if(mht(i, j, k, l) <= d)
{
a[i*m+j][k*m+l] = ;
a[i*m+j][n*m] += b[i][j];
}
Gauss();
for(i = ; i < n; i++)
{
for(j = ; j < m; j++)
printf("%8.2lf", x[i*m+j]);
cout<<endl;
}
}
return ;
}

hdu 3359 Kind of a Blur (高斯消元 浮点型)的更多相关文章

  1. HDU 3359 Kind of a Blur(高斯消元)

    题意: H * W (W,H <= 10) 的矩阵A的某个元素A[i][j],从它出发到其他点的曼哈顿距离小于等于D的所有值的和S[i][j]除上可达点的数目,构成了矩阵B.给定矩阵B,求矩阵A ...

  2. HDU 5833 Zhu and 772002 (高斯消元)

    Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...

  3. 2016ACM/ICPC亚洲区沈阳站H - Guessing the Dice Roll HDU - 5955 ac自动机+概率dp+高斯消元

    http://acm.hdu.edu.cn/showproblem.php?pid=5955 题意:给你长度为l的n组数,每个数1-6,每次扔色子,问你每个串第一次被匹配的概率是多少 题解:先建成ac ...

  4. HDU 5119 Happy Matt Friends(DP || 高斯消元)

    题目链接 题意 : 给你n个数,让你从中挑K个数(K<=n)使得这k个数异或的和小于m,问你有多少种异或方式满足这个条件. 思路 : 正解据说是高斯消元.这里用DP做的,类似于背包,枚举的是异或 ...

  5. HDU 5833 Zhu and 772002 (数论+高斯消元)

    题目链接 题意:给定n个数,这n个数的素因子值不超过2000,从中取任意个数使其乘积为完全平方数,问有多少种取法. 题解:开始用素筛枚举写了半天TLE了,后来队友说高斯消元才想起来,果断用模板.赛后又 ...

  6. HDU3359 Kind of a Blur(高斯消元)

    建立方程后消元 #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring& ...

  7. HDU 5833 Zhu and 772002(高斯消元)

    题意:给n个数,从n个数中抽取x(x>=1)个数,这x个数相乘为完全平方数,求一共有多少种取法,结果模1000000007. 思路:每个数可以拆成素数相乘的形式,例如: x1 2=2^1 * 3 ...

  8. hdu 3992 AC自动机上的高斯消元求期望

    Crazy Typewriter Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. HDU 5544 Ba Gua Zhen dfs+高斯消元

    Ba Gua Zhen Problem Description During the Three-Kingdom period, there was a general named Xun Lu wh ...

随机推荐

  1. 构件图 Component Diagram

    构件图是显示代码自身结构的实现级别的图表.构件图由诸如源代码文件.二进制代码文件.可执行文件或动态链接库 (DLL) 这样的构件构成,并通过依赖关系相连接 下面这张图介绍了构件图的基本内容: 下面这张 ...

  2. ios的UIImage的两种不同的图片加载方式 tom猫

    在ios的UI交互设计时,对图片的处理是难免的:不同的处理方式会对内存有不同的影响: ********************************************************* ...

  3. 对于Oracle中分页排序查询语句执行效率的比较分析

    转自:http://bbs.csdn.net/topics/370033478 对于Oracle中分页排序查询语句执行效率的比较分析 作者:lzgame 在工作中我们经常遇到需要在Oracle中进行分 ...

  4. Windows 10 响应式设计和设备友好的开发

    使用Effective pixels有效像素设计UI 什么是缩放像素和Effective有效像素: 当你的应用程序运行在Windows的设备,系统用一个算法控制的规范,字体,和其他UI元素显示在屏幕上 ...

  5. centos 7 有点意思

    Centos 7 防火墙 Centos尼马换了防火墙,名叫firewalld,还有iptables命令,这就叫坑爹.整了半个世纪才知道,他换了防火墙.添加滤镜,停止iptables都打不开80端口,简 ...

  6. 【转载】OpenStack Swift学习笔记

    免责声明:     本文转自网络文章,转载此文章仅为个人收藏,分享知识,如有侵权,请联系博主进行删除.     原文作者:崔炳华      原文地址:http://blog.csdn.net/i_ch ...

  7. Win7(包括32和64位)使用GitHub

    关于安装路径:32位可选择安装目录,但64位建议使用默认安装目录,否则Git Extensions配置会出问题 安装参考网址 http://code.google.com/p/tortoisegit/ ...

  8. 请求--拦截器--action经过

    引用我这里想知道的是同名的多个参数,会被自动的放置在List或者数组中,我想知道是怎么实现的,因为取一个参数和取多个同名的参数是不同的方法: 一个是request.getParameter 一个是re ...

  9. 设置go语言语法高亮

    1. 将$GOROOT/misc/vim/go.vim文件拷贝到-/.vim/syntax/目录下 2. 添加下面代码到~/.vimrc文件中 let mysyntaxfile = "XXX ...

  10. C#中sealed关键字

    C#中sealed关键字 1. sealed关键字     当对一个类应用 sealed 修饰符时,此修饰符会阻止其他类从该类继承.类似于Java中final关键字.     在下面的示例中,类 B ...