POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
【题意】每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树。
标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz……
♦01分数规划
参考Amber-胡伯涛神牛的论文《最小割模型在信息学竞赛中的应用》
°定义
分数规划(fractional programming)的一般形式:
Minimize λ = f(x) = a(x) / b(x) ( x∈S && ∀x∈S, b(x) > 0 )
其中,解向量x在解空间S内, a(x)与b(x)都是连续的实值函数。
分数规划的一个特例是0-1分数规划(0-1 fractional programming),就是其解向量x满足∀xi∈{0,1}(这就是所谓的0-1)。形式化定义如下:
Minimize λ = f(x) = a•x / b•x = sigma(a*x) / sigma(b*x) ( x∈{0,1}^n && b•x > 0 )
并且对解向量x可能还有其他的组合限制,这些针对解向量x的不同限制也就有了01分数规划的不同模型:比如最优比率生成树、最优比率生成环、最优比率割……
°解法
假设我们已经知道了最终答案λ,那么方程就可以写为: sigma(ax*) = sigma(bx*)•λ, 即sigma(ax*) - sigma(bx*)•λ = 0
令g(λ) = min(x∈S){ sigma(ax) - λ•sigma(bx) }, 易知该函数单调递减,且设*λ为该规划的最优解,则
g(λ) = 0 ⇔ λ = *λ
g(λ) > 0 ⇔ λ < *λ
g(λ) < 0 ⇔ λ > *λ
所以我们就可以二分枚举λ,然后判断g(λ)是否等于0……而g(λ)的计算要根据不同模型(即对x的不同限制)具体解决。
【Dinkelbach迭代算法】
不同于刚才的二分枚举,算法采用牛顿迭代的方式来求λ。
①初始设λ0 = 0
②计算g(λ0),并且得到最优解*x
③计算*λ = a•*x / b•*x, 如果*λ = λ0,算法结束;否则令λ0 = *λ,继续步骤②.
迭代比二分速度快很多,而且不用考虑二分的上界。
【最优比率生成树解法】
我们回到此题,就比如此题的最优比率生成树,二分枚举λ,那么就判断g(λ) = min(x∈S){ (cost-λ*dist)•x }是否等于0.
而计算g(λ)就是把原图中的每条边的权值都改为cost-λ*dist,然后求最小生成树即可.
#include
#include
//精度模板
const double eps = 1e-4;
bool dd(double x,double y) { return fabs( x - y ) dist[i]){
minx = dist[i];
u = i;
}
}
if (u == -1) break;
vis[u] = 1;
csum += cost[pre[u]][u];
lsum += len[pre[u]][u];
for (int i = 2; i w){
dist[i] = w;
pre[i] = u;
}
}
}
return csum / lsum;
}
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
while(scanf("%d", &n), n){
for (int i = 1; iPOJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)的更多相关文章
- POJ 2728 Desert King (01分数规划)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions:29775 Accepted: 8192 Descr ...
- POJ 2728 Desert King 01分数规划,最优比率生成树
一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...
- POJ 2728 Desert King | 01分数规划
题目: http://poj.org/problem?id=2728 题解: 二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行 #include<cstdio> ...
- poj2728 Desert King——01分数规划
题目:http://poj.org/problem?id=2728 第一道01分数规划题!(其实也蛮简单的) 这题也可以用迭代做(但是不会),这里用了二分: 由于比较裸,不作过多说明了. 代码如下: ...
- 01分数规划poj2728(最优比例生成树)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 21766 Accepted: 6087 Desc ...
- 【POJ2728】Desert King - 01分数规划
Description David the Great has just become the king of a desert country. To win the respect of his ...
- poj2728 Desert King --- 01分数规划 二分水果。。
这题数据量较大.普通的求MST是会超时的. d[i]=cost[i]-ans*dis[0][i] 据此二分. 但此题用Dinkelbach迭代更好 #include<cstdio> #in ...
- 【POJ2728】Desert King(分数规划)
[POJ2728]Desert King(分数规划) 题面 vjudge 翻译: 有\(n\)个点,每个点有一个坐标和高度 两点之间的费用是高度之差的绝对值 两点之间的距离就是欧几里得距离 求一棵生成 ...
- POJ 2728 Desert King(最优比率生成树 01分数规划)
http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...
随机推荐
- Spark Streaming揭秘 Day35 Spark core思考
Spark Streaming揭秘 Day35 Spark core思考 Spark上的子框架,都是后来加上去的.都是在Spark core上完成的,所有框架一切的实现最终还是由Spark core来 ...
- Oracle SGA参数调整
一. SGA的组成: 自动 SGA 管理后,Oracle 可以自动为我们调整以下内存池的大小: shared pool buffer cache large pool java pool stream ...
- .NET基础之自定义泛型
在.NET中泛型使用非常频繁,在控制台应用程序中,默认的引入了System.Collection.Generics名称空间,其中就提供了我们经常使用的泛型:List<T>和Dictiona ...
- (转)linux性能优化总结
感谢博客http://sillycat.iteye.com提供的资料 linux性能检查(一)介绍和CPU 通常监控的子系统有: CPU Memory IO Network 应用类型 IO相关,处理大 ...
- GridView ItemCommand
GridView ItemCommand中取某行某列的值方法,这里提供两个常用的: 一.用CommandArgument属性取值页面如下: <asp:TemplateColumn HeaderT ...
- 【BZOJ 1085】 [SCOI2005]骑士精神
Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相差为2, ...
- 【BZOJ 1911】 [Apio2010]特别行动队
Description Input Output Sample Input 4 -1 10 -20 2 2 3 4 Sample Output 9 HINT 转移方程 f[i]=max(f[j]+ ...
- Mapped Statements collection does not contain value for ResearcherMapper.方法名
搞了半天, 原来是映射文件没加, 新手常遇到的问题. Mapped Statements collection does not contain value for后面是什么类什么方法之类的: 错误原 ...
- [搜片神器]BT种子下载超时很多的问题分析
继续接着第一篇写:使用C#实现DHT磁力搜索的BT种子后端管理程序+数据库设计(开源)[搜片神器] 谢谢园子朋友的支持,已经找到个VPS进行测试,国外的服务器: h31bt.org 大家可以给提点意 ...
- iOS设计模式——委托(delegate)
委托(delegate)也叫代理是iOS开发中常用的设计模式.我们借助于protocol(参考博文:objective-c协议(protocol))可以很方便的实现这种设计模式. 什么是代理? 苹果的 ...