hdu 2767 Proving Equivalences
Proving Equivalences
题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边;问添加几条边可使图变成强连通图;
强连通分量:对于分量中的任意两个节点,都存在一条有向的路径(顺序不同,表示的路径不同);说白了,就是任意两点都能形成一个环(但不是说只有一个环)
思路:使用Tarjan算法 (讲解得很好)即可容易地在得到在一个强连通分量中设置每个点所属的强连通分量的标号;即得到所谓的缩点;
之后就是合并所有连通分量,使得形成一个强连通分量。这个合并就是在连通分量中加有向边,即将所缺少的总入度和缺少的总的出度比较,取大的即可;(可浪费不能缺)
实现细节:开始认为可以在Tarjan中之中得到每个强连通分量的入度和出度;即在循环枚举v时再加一个else来看这条连通分量之间的边,设置出度,入度在标记点的连通分量标号时处理。但是里面涉及到好几种情况的点;不好分析与调试;还是在全部处理完了再遍历边来看是否为不同连通分量的连边;更清晰一些;
PS:要特判id == 1的情况,不然题给就是一个强连通分量,ans = 0,但是处理in[],out[]时会认为该连通分量需要和其他的连通分量连边,导致答案为1...
还有就是点的入度和出度都是对所属的连通分量而言的,开始输入时不需要处理;
时间复杂度为O(n+m)
// 265MS 4792K
#include<bits/stdc++.h>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
const int MAXN = ;
int head[MAXN],tot;
struct edge{
int to,w,Next;
}e[MAXN];
void ins(int a,int b,int w = )
{
e[++tot].Next = head[a];
e[tot].to = b;
e[tot].w = w;
head[a] = tot;
}
const int N = ;
int pre[N],dfs_clock,low[N];
int belong[N],id;
stack<int> S;
bool stk[N];
void Tarjan(int u)
{
pre[u] = low[u] = ++dfs_clock;
S.push(u);
stk[u] = true;
int v;//点u所在连通分量的出度;
for(int i = head[u];i;i = e[i].Next){
v = e[i].to;
if(pre[v] == ){
Tarjan(v);
low[u] = min(low[u],low[v]);
}else if(stk[v]){
low[u] = min(low[u],pre[v]);
}
}
if(pre[u] == low[u]){//强连通分量的根节点
++id;
do{
v = S.top();
S.pop();stk[v] = false;
belong[v] = id;
}while(v != u);
}
}
int in[N],out[N];
int main()
{
int T,kase = ;
scanf("%d",&T);
while(T--){
MS0(head);tot = ;
int n,m,a,b;
scanf("%d%d",&n,&m);
rep0(i,,m){
scanf("%d%d",&a,&b);
ins(a,b);
}
id = dfs_clock = ;
rep1(i,,n) pre[i] = low[i] = belong[i] = ;
rep1(i,,n)if(pre[i] == )
Tarjan(i);
rep1(i,,id)
in[i] = out[i] = ;//并不是原图输入的入度与出度;而是缩点之后的强连通分量;
rep1(u,,n){//在缩点完了之后再对边进行处理,看是否符合入度出度关系;
for(int index = head[u];index;index = e[index].Next){
int v = e[index].to;
if(belong[u] != belong[v]){//***强连通分量之间的连边
in[belong[v]]++,out[belong[u]]++;
}
}
}
int in_deg = ,out_deg = ;
if(id == ){// ** WA了很多次。。
puts("");
continue;
}
rep1(j,,id){
if(in[j] == ) in_deg++;
if(out[j] == ) out_deg++;
}
printf("%d\n",max(in_deg,out_deg));
}
return ;
}
hdu 2767 Proving Equivalences的更多相关文章
- HDU 2767 Proving Equivalences (强联通)
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...
- HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- HDU 2767:Proving Equivalences(强连通)
题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...
- hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2767.Proving Equivalences-强连通图(有向图)+缩点
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- 文件夹同步/备份软件推荐 (SyncToy/FreeFileSync/Compare Advance/GoodSync/Allway Sync/Compare Advance)
关于文件同步的文章,已经很多次出现在异次元上了,因为它们很多都能实实在在提高工作便利性.比方说有我们熟悉的云端同步软件 Dropbox.金山快盘,以及曾经还介绍过可本地使用的 Allway Sync ...
- android离线安装adt
打开Eclipse, 在菜单栏上选择help->Install New SoftWare 出现如下界面: 点击 Add按钮,出现如下界面 在Name这而随意输入一个名字:ADT15:点击打开Ar ...
- 如何查找局域网的外网ip
方法一:一个简单的方法 用你电脑打开www.ip138.com 就可以看到自己的公网IP地址 方法二:如果一定要从路由器里面看 那就打开路由的配置页面 一般在系统状态里面 会有个WAN口IP 那就是你 ...
- 读取Log日志并打印到sdcard
@SuppressLint("SimpleDateFormat") private static SimpleDateFormat sdf = new SimpleDateForm ...
- Android NDK调试方式之一: adb logcat
查看程序执行过程中所打印的log信息,用于辅助调试排除代码错误. 一.采用NDK安装包下Samples/hello-jni工程做实验 1)修改jni/hello-jni.c文件 #include &l ...
- AAPT: libpng error: Not a PNG file 问题解决
导入项目到Android Studio的时候,Gradle Build失败了,报的错是 FAILURE: Build failed with an exception. Execution faile ...
- 修改BASH的配色
PS1变量简介 PS1是Linux终端用户的一个环境变量,用来说明命令行提示符的设置. \d :#代表日期,格式为weekday month date,例如:"Mon Aug 1" ...
- java集合总结
java中集合是很重要的一点,巩固这边学习的知识,把知识理一下 按马士兵的视频,总结的也很好,集合就是一个“1136” 1个图,1个类Collections,3个知识点:增强for循环,泛型,打包和解 ...
- Html5 audio stop
//html5 stop audio play function stopPlay(el){ el.pause(); el.currentTime = 0; } 使用: var el = docume ...
- adb uninstall卸载apk 命令后跟的是包的名称
昨天在使用adb卸载程序,结果死活卸载不了.我输入的命令和系统提示如下: arthur@arthur-laptop:~$ adb uninstall com.hase.bclm.client-2.ap ...