题意:

  给出一个连通图,要求将某些点涂黑,使得无论哪个点(包括相关的边)撤掉后能够成功使得剩下的所有点能够到达任意一个涂黑的点,颜料不多,涂黑的点越少越好,并输出要涂几个点和有多少种涂法。

思路:

  要使得任意撤掉一个点都能使其他点能够到达黑点,那么点双连通分量能保证这点,那么就在同个点双连通分量内涂黑1个点。但是每个【点双连通分量】都涂吗?太浪费颜料了,那就缩点成树,只需要涂叶子即可,那就找度为1的缩点。但是种数呢?叶子内的点除了割点外都是可以涂黑的,因为如果黑色割点被撤掉,那么叶子中的其他点怎么办?所以不能涂割点,每个黑点有【叶子中的点数-1】种涂法,所有黑店的涂法相乘为第2个结果。

  特殊情况,因为给的是连通图且至少有2个点,那么还可能会出现没有割点的情况(仅1个点双连通分量),那就直接涂黑两个,以防一个黑点被撤掉。

  此题出现的连续的点可能多达10万个,DFS就会爆栈。在C++下可以手动开栈,G++下的还不清楚怎么开。

 #pragma comment(linker,"/STACK:102400000,102400000")//开栈
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <stack>
#define LL long long
#define pii pair<int,int>
using namespace std;
const int N=+;
const int INF=0x7f7f7f7f;
int up;
int low[N], dfn[N];
bool iscut[N];
int dfn_clock, bcc_cnt, bcc_no[N];
unordered_map<int,int> mapp;
stack< pii > stac;
vector<int> bcc[N], vect[N]; void DFS(int x, int far)//tarjan
{
dfn[x]=low[x]=++dfn_clock; int chd=;
for(int i=; i<vect[x].size(); i++)
{
int t=vect[x][i];
if(!dfn[t])
{
chd++;
stac.push(make_pair(x,t));
DFS(t,x);
low[x]=min( low[x], low[t]);
if(low[t]>=dfn[x])
{
iscut[x]=true; //需要标记割点
bcc[++bcc_cnt].clear();
while(true)
{
int a=stac.top().first;
int b=stac.top().second;
stac.pop();
if(bcc_no[a]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(a);
bcc_no[a]=bcc_cnt;
}
if(bcc_no[b]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(b);
bcc_no[b]=bcc_cnt;
}
if(a==x&&b==t) break;
}
}
}
else if( dfn[t]<dfn[x] && t!=far)
{
stac.push(make_pair(x,t));
low[x]=min(low[x],dfn[t]);
}
}
if(chd==&&far==) iscut[x]=false; //根
} void find_bcc(int Case)
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(iscut,,sizeof(iscut));
memset(bcc_no,,sizeof(bcc_no)); dfn_clock=bcc_cnt=;
for(int i=; i<=up; i++) if(!dfn[i]) DFS(i,); //深搜
LL ans1=,ans2=; for(int i=; i<=bcc_cnt; i++) //统计度为多少
{
int cnt=;
for(int j=; j<bcc[i].size(); j++) if(iscut[bcc[i][j] ]) cnt++; //有割点就统计连通分量i的度。
if(cnt==) ans1++, ans2*=bcc[i].size()-;
}
if(bcc_cnt==) ans1=,ans2=(LL)bcc[].size()*(bcc[].size()-)/;
printf("Case %d: %lld %lld\n", Case, ans1, ans2);
} int main()
{
freopen("input.txt", "r", stdin);
int a, b, n, j=;
while(scanf("%d",&n), n)
{
mapp.clear();
for(int i=; i<N; i++) vect[i].clear();
up=;
for(int i=; i<n; i++)
{
scanf("%d%d",&a,&b);
if(!mapp[a]) mapp[a]=++up;
if(!mapp[b]) mapp[b]=++up;//点号缩小为连续 vect[mapp[a]].push_back(mapp[b]);
vect[mapp[b]].push_back(mapp[a]);
}
find_bcc(++j);
}
return ;
}

AC代码

HDU 3844 Mining Your Own Business(割点,经典)的更多相关文章

  1. HDU 3844 Mining Your Own Business

    首先,如果图本来就是一个点双联通的(即不存在割点),那么从这个图中选出任意两个点就OK了. 如果这个图存在割点,那么我们把割点拿掉后图就会变得支离破碎了.对于那种只和一个割点相连的块,这个块中至少要选 ...

  2. UVALive - 5135 - Mining Your Own Business(双连通分量+思维)

    Problem   UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...

  3. HDU3844 Mining Your Own Business

    HDU3844 Mining Your Own Business 问题描述John Digger是一个大型illudium phosdex矿的所有者.该矿山由一系列隧道组成,这些隧道在各个大型交叉口相 ...

  4. 「题解报告」SP16185 Mining your own business

    题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...

  5. HDU 2181 哈密顿绕行世界问题(经典DFS+回溯)

    哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. HDU 3038 - How Many Answers Are Wrong - [经典带权并查集]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3038 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  7. HDU 1789 Doing Homework again(非常经典的贪心)

    Doing Homework again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. HDU 1180 诡异的楼梯(超级经典的bfs之一,需多回顾)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1180 诡异的楼梯 Time Limit: 2000/1000 MS (Java/Others)     ...

  9. UVA5135 Mining Your Own Business ( 无向图双连通分量)

    题目链接 题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太 ...

随机推荐

  1. 垃圾回收 GC

    垃圾回收器的回收的对象: 垃圾回收只回收托管堆中的内存   什么样的对象才会被回收? 没有变量引用的对象.没有变量引用的对象,表示可以被回收了(null.   什么时间回收? 不确定,当程序需要新内存 ...

  2. C#图片上写文字

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Dr ...

  3. package.json 字段全解析 share

    Name 必须字段. 小提示: 不要在name中包含js, node字样: 这个名字最终会是URL的一部分,命令行的参数,目录名,所以不能以点号或下划线开头: 这个名字可能在require()方法中被 ...

  4. 简单易懂的现代魔法——Play Framework攻略4

    接前文:简单易懂的现代魔法——Play Framework攻略3 1.The Object 时隔2个多月,Play Framework系列又更新了,本次的主题是:利用Play Framework实现R ...

  5. Thread的第五天学习

    1.如果每个线程执行的代码相同,可以使用同一个Runnable对象,这个Runnable对象中有那个共享数据,例如:卖票系统就可以这么做! package com.thread.demo; publi ...

  6. Bash的脚本参数

    $0:脚本名字.此变量包含地址,可以使用basename $0获得脚本名称.$1:第一个参数$2,$3,$4,$5,…一次类推. $# 传递到脚本的参数个数$* 以一个单字符串显示所有向脚本传递的参数 ...

  7. NET 使用HtmlAgilityPack抓取网页数据

    刚刚学习了XPath路径表达式,主要是对XML文档中的节点进行搜索,通过XPath表达式可以对XML文档中的节点位置进行快速定位和访问,html也是也是一种类似于xml的标记语言,但是语法没有那么严谨 ...

  8. 李洪强iOS开发之【Objective-C】08-self关键字

    一.Java中的this只能用在动态方法中,不能用在静态方法中 1.在动态方法中使用this关键字 1 public class Student { 2 private int age; 3 publ ...

  9. Java 按字节获得字符串(中文)长度

    引自:http://songjianyong.iteye.com/blog/1552973 package cn.com.songjy.test; import java.io.Unsupported ...

  10. 百度网盘,前几天刚从百度云改名过来,百度云这个名字给之前的百度开放云(同步盘用户比较小众)good

    作者:黑郁金香链接:http://www.zhihu.com/question/51803053/answer/127562835来源:知乎著作权归作者所有,转载请联系作者获得授权. 在8月网盘大面积 ...