题意:

  给出一个连通图,要求将某些点涂黑,使得无论哪个点(包括相关的边)撤掉后能够成功使得剩下的所有点能够到达任意一个涂黑的点,颜料不多,涂黑的点越少越好,并输出要涂几个点和有多少种涂法。

思路:

  要使得任意撤掉一个点都能使其他点能够到达黑点,那么点双连通分量能保证这点,那么就在同个点双连通分量内涂黑1个点。但是每个【点双连通分量】都涂吗?太浪费颜料了,那就缩点成树,只需要涂叶子即可,那就找度为1的缩点。但是种数呢?叶子内的点除了割点外都是可以涂黑的,因为如果黑色割点被撤掉,那么叶子中的其他点怎么办?所以不能涂割点,每个黑点有【叶子中的点数-1】种涂法,所有黑店的涂法相乘为第2个结果。

  特殊情况,因为给的是连通图且至少有2个点,那么还可能会出现没有割点的情况(仅1个点双连通分量),那就直接涂黑两个,以防一个黑点被撤掉。

  此题出现的连续的点可能多达10万个,DFS就会爆栈。在C++下可以手动开栈,G++下的还不清楚怎么开。

 #pragma comment(linker,"/STACK:102400000,102400000")//开栈
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <stack>
#define LL long long
#define pii pair<int,int>
using namespace std;
const int N=+;
const int INF=0x7f7f7f7f;
int up;
int low[N], dfn[N];
bool iscut[N];
int dfn_clock, bcc_cnt, bcc_no[N];
unordered_map<int,int> mapp;
stack< pii > stac;
vector<int> bcc[N], vect[N]; void DFS(int x, int far)//tarjan
{
dfn[x]=low[x]=++dfn_clock; int chd=;
for(int i=; i<vect[x].size(); i++)
{
int t=vect[x][i];
if(!dfn[t])
{
chd++;
stac.push(make_pair(x,t));
DFS(t,x);
low[x]=min( low[x], low[t]);
if(low[t]>=dfn[x])
{
iscut[x]=true; //需要标记割点
bcc[++bcc_cnt].clear();
while(true)
{
int a=stac.top().first;
int b=stac.top().second;
stac.pop();
if(bcc_no[a]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(a);
bcc_no[a]=bcc_cnt;
}
if(bcc_no[b]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(b);
bcc_no[b]=bcc_cnt;
}
if(a==x&&b==t) break;
}
}
}
else if( dfn[t]<dfn[x] && t!=far)
{
stac.push(make_pair(x,t));
low[x]=min(low[x],dfn[t]);
}
}
if(chd==&&far==) iscut[x]=false; //根
} void find_bcc(int Case)
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(iscut,,sizeof(iscut));
memset(bcc_no,,sizeof(bcc_no)); dfn_clock=bcc_cnt=;
for(int i=; i<=up; i++) if(!dfn[i]) DFS(i,); //深搜
LL ans1=,ans2=; for(int i=; i<=bcc_cnt; i++) //统计度为多少
{
int cnt=;
for(int j=; j<bcc[i].size(); j++) if(iscut[bcc[i][j] ]) cnt++; //有割点就统计连通分量i的度。
if(cnt==) ans1++, ans2*=bcc[i].size()-;
}
if(bcc_cnt==) ans1=,ans2=(LL)bcc[].size()*(bcc[].size()-)/;
printf("Case %d: %lld %lld\n", Case, ans1, ans2);
} int main()
{
freopen("input.txt", "r", stdin);
int a, b, n, j=;
while(scanf("%d",&n), n)
{
mapp.clear();
for(int i=; i<N; i++) vect[i].clear();
up=;
for(int i=; i<n; i++)
{
scanf("%d%d",&a,&b);
if(!mapp[a]) mapp[a]=++up;
if(!mapp[b]) mapp[b]=++up;//点号缩小为连续 vect[mapp[a]].push_back(mapp[b]);
vect[mapp[b]].push_back(mapp[a]);
}
find_bcc(++j);
}
return ;
}

AC代码

HDU 3844 Mining Your Own Business(割点,经典)的更多相关文章

  1. HDU 3844 Mining Your Own Business

    首先,如果图本来就是一个点双联通的(即不存在割点),那么从这个图中选出任意两个点就OK了. 如果这个图存在割点,那么我们把割点拿掉后图就会变得支离破碎了.对于那种只和一个割点相连的块,这个块中至少要选 ...

  2. UVALive - 5135 - Mining Your Own Business(双连通分量+思维)

    Problem   UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...

  3. HDU3844 Mining Your Own Business

    HDU3844 Mining Your Own Business 问题描述John Digger是一个大型illudium phosdex矿的所有者.该矿山由一系列隧道组成,这些隧道在各个大型交叉口相 ...

  4. 「题解报告」SP16185 Mining your own business

    题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...

  5. HDU 2181 哈密顿绕行世界问题(经典DFS+回溯)

    哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. HDU 3038 - How Many Answers Are Wrong - [经典带权并查集]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3038 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  7. HDU 1789 Doing Homework again(非常经典的贪心)

    Doing Homework again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. HDU 1180 诡异的楼梯(超级经典的bfs之一,需多回顾)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1180 诡异的楼梯 Time Limit: 2000/1000 MS (Java/Others)     ...

  9. UVA5135 Mining Your Own Business ( 无向图双连通分量)

    题目链接 题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太 ...

随机推荐

  1. 【UVA】【11762】Race to 1(得到1)

    数学期望/马尔可夫过程 DP/记忆化搜索 刘汝佳老师白书上的例题…… //UVA 11762 #include<vector> #include<cstdio> #includ ...

  2. 【POJ】【2348】Euclid‘s Game

    博弈论 题解:http://blog.sina.com.cn/s/blog_7cb4384d0100qs7f.html 感觉本题关键是要想到[当a-b>b时先手必胜],后面的就只跟奇偶性有关了 ...

  3. Eclipse plugin插件开发 NoClassDefFoundError

    Eclipse的每一个plugin都有属于自己的类加载器,这是OSGI架构的基础,每一个plugin项目都是一个bundle,独立运行在各自的运行环境里面,这就造成了开发时和运行时的不同. Eclip ...

  4. HDU 1753 大明A+B(字符串模拟,简单题)

    简单题,但要考虑一些细节: 前导0不要,后导0不要,小数长度不一样时,有进位时,逆置处理输出 然后处理起来就比较麻烦了. 题目链接 我的代码纯模拟,把小数点前后分开来处理,写的很繁杂,纯当纪念——可怜 ...

  5. C# 面向对象之概念理解(3)

    多态 多态是指两个或多个属于不同类的对象,对同一个消息(方法调用)做出不同响应的能力. 多态(<韦氏大词典>)中定义:可以呈现不同形式的能力或状态. C#如何实现多态的知识——即继承上覆载 ...

  6. ASP .net(照片列表详细功能演示)

    大家好,今天我们需要讲解的内容就是把上篇文章当中提到的照片列表的很多功能细化去做. 那么之间我们两篇文章的目的就是要让大家深刻体会get,post的使用场景极其作用.像一般处理程序的使用,隐藏域的使用 ...

  7. NET权限系统开源项目

    http://www.cnblogs.com/yubaolee/p/OpenAuth.html http://www.cnblogs.com/guozili/p/3496265.html Sereni ...

  8. CentOS7安装Hadoop2.7完整流程

    总体思路,准备主从服务器,配置主服务器可以无密码SSH登录从服务器,解压安装JDK,解压安装Hadoop,配置hdfs.mapreduce等主从关系. 1.环境,3台CentOS7,64位,Hadoo ...

  9. Qt学习记录--Qt::CaseSensitive

    Qt::CaseSensitivity 为枚举类型, 可取值Qt::CaseSensitive 和 Qt::CaseInsensitive, 表示匹配的灵敏度. 比较字符串的时候 Qt::CaseSe ...

  10. iOS Objective-C对象模型及应用

    前言 原创文章,转载请注明出自唐巧的技术博客. 本文主要介绍Objective-C对象模型的实现细节,以及Objective-C语言对象模型中对isa swizzling和method swizzli ...