什么是最小生成树?

生成树是相对图来说的,一个图的生成树是一个树并把图的所有顶点连接在一起。一个图可以有许多不同的生成树。一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树其实是最小权重生成树的简称。生成树的权重是考虑到了生成树的每条边的权重的总和。

最小生成树有几条边?

最小生成树有(V – 1)条边,其中V是给定的图的顶点数量。

Kruskal算法

下面是步骤寻找MST使用Kruskal算法

1 1,按照所有边的权重排序(从小到大)
2  
3 2,选择最小的边。检查它是否形成与当前生成树形成环。如果没有形成环,讲这条边加入生成树。否则,丢弃它。 
4  
5 3,重复第2步,直到有生成树(V-1)条边

步骤2使用并查集算法来检测环。如果不熟悉并查集建议阅读下并查集

该算法是一种贪心算法。贪心的选择是选择最小的权重的边,并不会和当前的生成树形成环。让我们了解一个例子,考虑下面输入图

spanning-tree-mst

该图包含9个顶点和14个边。因此,形成最小生成树将有(9 – 1)= 8条边。

01 排序后:
02 Weight   Src    Dest
03 1         7      6
04 2         8      2
05 2         6      5
06 4         0      1
07 4         2      5
08 6         8      6
09 7         2      3
10 7         7      8
11 8         0      7
12 8         1      2
13 9         3      4
14 10        5      4
15 11        1      7
16 14        3      5

现在从已经排序的边中逐个选择
1. edge 7-6:没有环,加入

2. edge 8-2: 没有环,加入

3. edge 6-5: 没有环,加入

4. edge 0-1: 没有环,加入

5. edge 2-5: 没有环,加入

6. edge 8-6: 加入后会形成环,舍弃

7. edge 2-3: 没有环,加入

8. edge 7-8: 加入后会形成环,舍弃

9. edge 0-7: 没有环,加入

10. edge 1-2: 加入后会形成环,舍弃

11. edge 3-4: 没有环,加入

目前为止一家有了 V-1 条边,可以肯定V个顶点都一包含在内,到此结束。

代码实现:

// Kruskal 最小生成树算法
#include <stdio.h>
#include <stdlib.h>
#include <string.h> // 带有权重的边
struct Edge
{
int src, dest, weight;
}; // 无向图
struct Graph
{
// V-> 顶点个数, E->边的个数
int V, E;
// 由于是无向图,从 src 到 dest的边,同时也是 dest到src的边,按一条边计算
struct Edge* edge;
}; //构建一个V个顶点 E条边的图
struct Graph* createGraph(int V, int E)
{
struct Graph* graph = (struct Graph*) malloc( sizeof(struct Graph) );
graph->V = V;
graph->E = E;
graph->edge = (struct Edge*) malloc( graph->E * sizeof( struct Edge ) );
return graph;
} //并查集的结构体
struct subset
{
int parent;
int rank;
}; // 使用路径压缩查找元素i
int find(struct subset subsets[], int i)
{
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent;
} // 按秩合并 x,y
void Union(struct subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
} // 很据权重比较两条边
int myComp(const void* a, const void* b)
{
struct Edge* a1 = (struct Edge*)a;
struct Edge* b1 = (struct Edge*)b;
return a1->weight > b1->weight;
} // Kruskal 算法
void KruskalMST(struct Graph* graph)
{
int V = graph->V;
struct Edge result[V]; //存储结果
int e = ; //result[] 的index
int i = ; // 已排序的边的 index //第一步排序
qsort(graph->edge, graph->E, sizeof(graph->edge[]), myComp); // 为并查集分配内存
struct subset *subsets =
(struct subset*) malloc( V * sizeof(struct subset) ); // 初始化并查集
for (int v = ; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = ;
} // 边的数量到V-1结束
while (e < V - )
{
// Step 2: 先选最小权重的边
struct Edge next_edge = graph->edge[i++]; int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest); // 如果此边不会引起环
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
// 否则丢弃,继续
} // 打印result[]
printf("Following are the edges in the constructed MST\n");
for (i = ; i < e; ++i)
printf("%d -- %d == %d\n", result[i].src, result[i].dest,
result[i].weight);
return;
} // 测试
int main()
{
/* 创建下面的图:
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = ; // 顶点个数
int E = ; //边的个数
struct Graph* graph = createGraph(V, E);
// 添加边 0-1
graph->edge[].src = ;
graph->edge[].dest = ;
graph->edge[].weight = ; graph->edge[].src = ;
graph->edge[].dest = ;
graph->edge[].weight = ; graph->edge[].src = ;
graph->edge[].dest = ;
graph->edge[].weight = ; graph->edge[].src = ;
graph->edge[].dest = ;
graph->edge[].weight = ; graph->edge[].src = ;
graph->edge[].dest = ;
graph->edge[].weight = ; KruskalMST(graph); return ;
}

运行结果如下:

Following are the edges in the constructed MST
-- ==
-- ==
-- ==

 时间复杂度:

O(ElogE) 或 O(ElogV)。 排序使用 O(ELogE) 的时间,之后我们遍历中使用并查集O(LogV) ,所以总共复杂度是 O(ELogE + ELogV)。E的值最多为V^2,所以

O(LogV) 和 O(LogE) 可以看做是一样的。

贪心算法(2)-Kruskal最小生成树的更多相关文章

  1. 贪心算法(Greedy Algorithm)最小生成树 克鲁斯卡尔算法(Kruskal&#39;s algorithm)

    克鲁斯卡尔算法(Kruskal's algorithm)它既是古典最低的一个简单的了解生成树算法. 这充分反映了这一点贪心算法的精髓.该方法可以通常的图被表示.图选择这里借用Wikipedia在.非常 ...

  2. 贪心算法之Kruskal

    克鲁斯卡尔Kruskal算法同Prim算法一样,都是求最小生成树.Kruskal是不断的找最短边,加入集合,且不构成回路. 所以,我们可以给每个点定义一个集合,一边的起点和终点查看是否属于同一集合,如 ...

  3. 贪心算法(Greedy Algorithm)之最小生成树 克鲁斯卡尔算法(Kruskal&#39;s algorithm)

    克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikiped ...

  4. 经典问题----最小生成树(kruskal克鲁斯卡尔贪心算法)

    题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...

  5. Kruskal 最小生成树算法

    对于一个给定的连通的无向图 G = (V, E),希望找到一个无回路的子集 T,T 是 E 的子集,它连接了所有的顶点,且其权值之和为最小. 因为 T 无回路且连接所有的顶点,所以它必然是一棵树,称为 ...

  6. 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind

    最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...

  7. 最小生成树之Prim算法,Kruskal算法

    Prim算法 1 .概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gr ...

  8. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  9. 数据结构与算法系列----最小生成树(Prim算法&amp;Kruskal算法)

     一:Prim算法       1.概览 普里姆算法(Prim算法).图论中的一种算法.可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中.不但包含了连通图里的全部顶点(英语:Ve ...

随机推荐

  1. <译>Selenium Python Bindings 1 - Installation

    Installation Introduction Selenium Python bindings 提供了一个简单的API来使用Selenium WebDriver编写使用功能/验收测试.通过Sel ...

  2. js控制不同的时间段显示不同的css样式

    js控制不同的时间段显示不同的css样式 js函数,可以放到单独的js文件中也可以放到当前页的<head>标记之内 function getCSS(){        datetoday ...

  3. 【原】Mongodb相关资料

    Mongodb与关系型数据库对比 Mongodb与关系型数据库对比 由于之前主要接触的是关系型数据库,所以主要将Mongodb与关系型数据库进行对比:主要从术语.Server与Client.数据定义语 ...

  4. <Araxis Merge>Windows平台下的Merge概览

    它是什么 Merge是一个来自Araxis的可视化文件比较/合并及文件夹同步的应用程序. 用户界面使用英语.德语.日语.法语.国际西班牙语.汉语(繁体和简体)进行本地化了. 优势 对于软件工程师和网站 ...

  5. (转)定制iOS 7中的导航栏和状态栏

    近期,跟大多数开发者一样,我也正忙于对程序进行升级以适配iOS 7.最新的iOS 7外观上有大量的改动.从开发者的角度来看,导航栏和状态栏就发生了明显的变化.状态栏现在是半透明的了,这也就意味着导航栏 ...

  6. Spring Auto proxy creator example

    In last Spring AOP examples – advice, pointcut and advisor, you have to manually create a proxy bean ...

  7. Spring EL Lists, Maps example

    In this article, we show you how to use Spring EL to get value from Map and List. Actually, the way ...

  8. [iOS基础控件 - 6.10.1] PickerView 餐点搭配Demo

    A.需求 1.使用PickerView做出有3列餐点(水果.主菜.饮料)的搭配Demo 2.选择的餐点实时显示在“显示区” 3.提供“随机”按钮,随机选择菜品搭配   B.实现步骤 1.拖入一个Pic ...

  9. jeecms附件标签用法

    [#if content.attachments?size gt 0] [#list content.attachments as attach] <a id="attach${att ...

  10. dao 获取表最大排序实现

    public Long getMaxOrder(Long parentId) { Query query = this.getSession().createSQLQuery( "selec ...