正整数的n次方求和
引理: (Abel分部求和法)
$$\sum_{k=1}^{n}a_{k}b_{k}=A_{n}b_{n}+\sum_{k=1}^{n-1}A_{k}(b_{k}-b_{k+1})$$
其中$A_{k}=a_{1}+a_{2}+\cdots+a_{n}$.
结论 1:
$$\sum_{k=1}^{n}k=\frac{k(k+1)}{2}$$
结论 2:
$$\sum_{k=1}^{n}k^{2}=\frac{n(n+1)(2n+1)}{6}$$
证明: 由分部求和公式得
\begin{align*}
\sum_{k=1}^{n}k^{2}=\sum_{k=1}^{n}k\cdot k&=\frac{n^{2}(n+1)}{2}-\frac{1}{2}\sum_{k=1}^{n-1}(k^{2}+k)\\
&=\frac{n(n+1)(2n+1)}{4}-\frac{1}{2}\sum_{k=1}^{n}k^{2}
\end{align*}
移项整理便得结论2.
结论 3:
$$\sum_{k=1}^{n}k^{3}=\frac{k^{2}(k+1)^{2}}{4}$$
证明: 由分部求和公式得
\begin{align*}
\sum_{k=1}^{n}k^{3}=\sum_{k=1}^{n}k^{2}\cdot k&=\frac{n^{2}(n+1)(2n+1)}{6}-\frac{1}{6}\sum_{k=1}^{n-1}k(k+1)(2k+1)\\
&=\frac{n^{2}(n+1)(2n+1)}{6}-\frac{1}{3}\sum_{k=1}^{n}k^{3}-\frac{1}{2}\sum_{k=1}^{n-1}k^{2}-\frac{1}{6}\sum_{k=1}^{n-1}k+\frac{n^{3}}{3}
\end{align*}
由结论1 结论2便得结论3.
用此方法可得任意$\alpha$为整数, 和式
$$\sum_{k=1}^{n}k^{\alpha}$$
的表达式.
也可以用贝努利求和公式计算。
命题:设$f(x)$为任意函数,则
$$\sum_{k=1}^{n}f(k)=\binom{n}{1}f(1)+\binom{n}{2}\Delta f(1)+\cdots+\binom{n}{k}\Delta^{k-1}f(1)+\cdots+\binom{n}{n}\Delta^{n-1}f(1)$$
其中$\Delta$是差分算子, $\Delta f(x)=f(x+1)-f(x)$.
证明: 定义位移算子$E f(x)=f(x+1)$,那么 $E=I+\Delta$,$I$为恒等算子.
$$\sum_{k=1}^{n}f(k)=\sum_{k=1}^{n}E^{k-1}f(1)=\sum_{k=1}^{n}(I+\Delta)^{k-1}f(1)$$
$$=\Delta^{-1}\left[(I+\Delta)^{n}-I\right]f(1)=\sum_{k=1}^{n}\binom{n}{k}\Delta^{k-1}f(1)$$
取$f(k)=k^{4}$,经计算
$$\sum_{k=1}^{n}k^{4}=\binom{n}{1}+15\binom{n}{2}+50\binom{n}{3}+60\binom{n}{4}+24\binom{n}{5}$$
正整数的n次方求和的更多相关文章
- akoj-1153-p次方求和
p次方求和 Time Limit:1000MS Memory Limit:65536K Total Submit:196 Accepted:46 Description 一个很简单的问题,求1^p+ ...
- hdu 4059 数论+高次方求和+容斥原理
http://acm.hdu.edu.cn/showproblem.php? pid=4059 现场赛中通过率挺高的一道题 可是容斥原理不怎么会.. 參考了http://blog.csdn.net/a ...
- Codeforces 772D - Varying Kibibits(高维差分+二项式定理维护 k 次方和)
Codeforces 题目传送门 & 洛谷题目传送门 首先很容易注意到一件事,那就是对于所有 \(f(S)\) 可能成为 \(x\) 的集合 \(S\),必定有 \(\forall y\in ...
- Codeforces D. The Sum of the k-th Powers(拉格朗日插值)
题目描述: The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes i ...
- C++ 与OpenCV 学习笔记
联合体:当多个数据需要共享内存或者多个数据每次只取其一时,可以利用联合体(union) 1. 联合体是一种结构: 2. 他的所有成员相对于基地址的偏移量均为0: 3. 此结构空间要大到足够容纳最&qu ...
- EMC题
[面试题]EMC易安信面试题解 1. 除以59的余数是多少. 来自wiki:费马小定理是数论中的一个定理:假如a是一个整数,p是一个質数,那么 如果a不是p的倍数,这个定理也可以写成 这个书写方式更加 ...
- [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...
- 海量数据挖掘MMDS week2: LSH的距离度量方法
http://blog.csdn.net/pipisorry/article/details/48882167 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week1: Link Analysis - PageRank
http://blog.csdn.net/pipisorry/article/details/48579435 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
随机推荐
- BZOJ1272: [BeiJingWc2008]Gate Of Babylon
题解: 多重集合的组合数?还是0-m?有些元素有个数限制? 多重集合的组合数可以插板法,0-m直接利用组合数的公式一遍求出来,个数限制注意到只有15个,那我们就暴力容斥了 AC了真舒畅.. 注意开lo ...
- BZOJ3850: ZCC Loves Codefires
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3850 题解:类似于国王游戏,推一下相邻两个元素交换的条件然后排个序就可以了. 代码: #inc ...
- 快速搭建建SSH服务
一般来说如果用Ubuntu作为服务器,我们经常需要通过其他客户端远程连接它. 远程连接需要使用SSH,这里列出了一个快速完成这一任务的方法. 键入命令 # sudo apt-get install o ...
- [转] C# 中的static静态变量
logitechyan原文关于C#中static静态变量 C#静态变量使用static 修饰符进行声明,在类被实例化时创建,通过类进行访问不带有 static 修饰符声明的变量称做非静态变量,在对象被 ...
- MyBatis批量删除 多态sql,构建in语句
<!--==========================删除==================================== --> <delete id=&quo ...
- CXF之七 传输文件
CXF的文件传输通过MTOM实现.MTOM(SOAP Message Transmission Optimization Mechanism)SOAP消息传输优化机制,可以在SOAP消息中发送二进制数 ...
- Multiple View Geometry in Computer Vision Second Edition by Richard Hartley 读书笔记(二)
// Chapter 2介绍的是2d下的投影变换,摘录下了以下定理 Result 2.1. The point x lies on the line l if and only if xTl = 0. ...
- Redrain仿酷狗音乐播放器开发完毕,发布测试程序
转载请说明原出处,谢谢~~ 从暑假到现在中秋刚过,我用duilib开发仿酷狗播放器大概经历了50天.做仿酷狗的意图只是看原酷狗的界面比较漂亮,想做个完整一些的工程来练习一下duilib.今天把写好的程 ...
- XSLT2.0实用的新功能 .(转)
转自:http://blog.csdn.net/crystalbruce/article/details/7407631 2007年1月,W3C发布了XSLT2.0规范,2009年发布了XSLT2.1 ...
- 怎么对HTML 5的特性做检测?
原译文地址:http://www.ido321.com/1116.html 原文:Detect HTML5 Features 译文:HTML5特性检测 译者:dwqs 随 着HTML 5的流行,现在H ...