正整数的n次方求和
引理: (Abel分部求和法)
$$\sum_{k=1}^{n}a_{k}b_{k}=A_{n}b_{n}+\sum_{k=1}^{n-1}A_{k}(b_{k}-b_{k+1})$$
其中$A_{k}=a_{1}+a_{2}+\cdots+a_{n}$.
结论 1:
$$\sum_{k=1}^{n}k=\frac{k(k+1)}{2}$$
结论 2:
$$\sum_{k=1}^{n}k^{2}=\frac{n(n+1)(2n+1)}{6}$$
证明: 由分部求和公式得
\begin{align*}
\sum_{k=1}^{n}k^{2}=\sum_{k=1}^{n}k\cdot k&=\frac{n^{2}(n+1)}{2}-\frac{1}{2}\sum_{k=1}^{n-1}(k^{2}+k)\\
&=\frac{n(n+1)(2n+1)}{4}-\frac{1}{2}\sum_{k=1}^{n}k^{2}
\end{align*}
移项整理便得结论2.
结论 3:
$$\sum_{k=1}^{n}k^{3}=\frac{k^{2}(k+1)^{2}}{4}$$
证明: 由分部求和公式得
\begin{align*}
\sum_{k=1}^{n}k^{3}=\sum_{k=1}^{n}k^{2}\cdot k&=\frac{n^{2}(n+1)(2n+1)}{6}-\frac{1}{6}\sum_{k=1}^{n-1}k(k+1)(2k+1)\\
&=\frac{n^{2}(n+1)(2n+1)}{6}-\frac{1}{3}\sum_{k=1}^{n}k^{3}-\frac{1}{2}\sum_{k=1}^{n-1}k^{2}-\frac{1}{6}\sum_{k=1}^{n-1}k+\frac{n^{3}}{3}
\end{align*}
由结论1 结论2便得结论3.
用此方法可得任意$\alpha$为整数, 和式
$$\sum_{k=1}^{n}k^{\alpha}$$
的表达式.
也可以用贝努利求和公式计算。
命题:设$f(x)$为任意函数,则
$$\sum_{k=1}^{n}f(k)=\binom{n}{1}f(1)+\binom{n}{2}\Delta f(1)+\cdots+\binom{n}{k}\Delta^{k-1}f(1)+\cdots+\binom{n}{n}\Delta^{n-1}f(1)$$
其中$\Delta$是差分算子, $\Delta f(x)=f(x+1)-f(x)$.
证明: 定义位移算子$E f(x)=f(x+1)$,那么 $E=I+\Delta$,$I$为恒等算子.
$$\sum_{k=1}^{n}f(k)=\sum_{k=1}^{n}E^{k-1}f(1)=\sum_{k=1}^{n}(I+\Delta)^{k-1}f(1)$$
$$=\Delta^{-1}\left[(I+\Delta)^{n}-I\right]f(1)=\sum_{k=1}^{n}\binom{n}{k}\Delta^{k-1}f(1)$$
取$f(k)=k^{4}$,经计算
$$\sum_{k=1}^{n}k^{4}=\binom{n}{1}+15\binom{n}{2}+50\binom{n}{3}+60\binom{n}{4}+24\binom{n}{5}$$
正整数的n次方求和的更多相关文章
- akoj-1153-p次方求和
p次方求和 Time Limit:1000MS Memory Limit:65536K Total Submit:196 Accepted:46 Description 一个很简单的问题,求1^p+ ...
- hdu 4059 数论+高次方求和+容斥原理
http://acm.hdu.edu.cn/showproblem.php? pid=4059 现场赛中通过率挺高的一道题 可是容斥原理不怎么会.. 參考了http://blog.csdn.net/a ...
- Codeforces 772D - Varying Kibibits(高维差分+二项式定理维护 k 次方和)
Codeforces 题目传送门 & 洛谷题目传送门 首先很容易注意到一件事,那就是对于所有 \(f(S)\) 可能成为 \(x\) 的集合 \(S\),必定有 \(\forall y\in ...
- Codeforces D. The Sum of the k-th Powers(拉格朗日插值)
题目描述: The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes i ...
- C++ 与OpenCV 学习笔记
联合体:当多个数据需要共享内存或者多个数据每次只取其一时,可以利用联合体(union) 1. 联合体是一种结构: 2. 他的所有成员相对于基地址的偏移量均为0: 3. 此结构空间要大到足够容纳最&qu ...
- EMC题
[面试题]EMC易安信面试题解 1. 除以59的余数是多少. 来自wiki:费马小定理是数论中的一个定理:假如a是一个整数,p是一个質数,那么 如果a不是p的倍数,这个定理也可以写成 这个书写方式更加 ...
- [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...
- 海量数据挖掘MMDS week2: LSH的距离度量方法
http://blog.csdn.net/pipisorry/article/details/48882167 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 海量数据挖掘MMDS week1: Link Analysis - PageRank
http://blog.csdn.net/pipisorry/article/details/48579435 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
随机推荐
- HTML空格符号   / &ensp / &emsp
半角的不断行的空白格(推荐使用) 半角的空格 全角的空格
- EF4.0和EF5.0增删改查写法区别
1 public T AddEntity(T entity) 2 { 3 //EF4.0的写法 4 添加实体 5 //db.CreateObjectSet<T>().AddObject(e ...
- webapp调试工具weinre的使用
在设计师与前端开发人员的努力下,一个WebApp出炉了,可是测试人员说了一堆的问题:某某机型下页面表现不一致,某某系统下页面如何如何,某某 系统浏览器下页面怎么怎么滴.看着满满的测试汇总文档,我们曾经 ...
- 深入浅出 iOS 之生命周期
转:http://blog.csdn.net/kesalin/article/details/6691766 iOS应用程序的生命周期相比 Android 应用程序的生命周期来说,没那么简明易懂,但是 ...
- HDU5731 Solid Dominoes Tilings 状压dp+状压容斥
题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hiho ...
- OpenGL超级宝典第5版&&缓冲区
缓冲区有很多用途:可以保存顶点数据,像素数据,纹理数据,着色器处理的输入,不同着色器阶段的输出. 缓冲区保存在GPU内存中,提供高速有效的访问. 像素缓冲区对象: GLuint pixBuffer ...
- oracle修改密码及账户锁定
在oracle修改密码的时候,一种是用dba账户来修改用户的密码,一种是用户自己修改自己的密码: SQL> alter user kel identified by kel; 解锁命令: SQL ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- [Hive-Tutorial] What Is Hive
What Is Hive Hive is a data warehousing infrastructure based on Hadoop. Hadoop provides massive scal ...
- Spark系列(九)DAGScheduler工作原理
以wordcount为示例进行深入分析 1 33 ) { 46 logInfo("Submitting " + tasks.size + " missi ...