POJ 2923 Relocation(01背包变形, 状态压缩DP)
Q: 如何判断几件物品能否被 2 辆车一次拉走?
A: DP 问题. 先 dp 求解第一辆车能够装下的最大的重量, 然后计算剩下的重量之和是否小于第二辆车的 capacity, 若小于, 这 OK.
Description
Emma and Eric are moving to their new house they bought after returning from their honeymoon. Fortunately, they have a few friends helping them relocate. To move the furniture, they only have two compact cars, which complicates everything a bit. Since the furniture does not fit into the cars, Eric wants to put them on top of the cars. However, both cars only support a certain weight on their roof, so they will have to do several trips to transport everything. The schedule for the move is planed like this:
- At their old place, they will put furniture on both cars.
 - Then, they will drive to their new place with the two cars and carry the furniture upstairs.
 - Finally, everybody will return to their old place and the process continues until everything is moved to the new place.
 
Note, that the group is always staying together so that they can have more fun and nobody feels lonely. Since the distance between the houses is quite large, Eric wants to make as few trips as possible.
Given the weights wi of each individual piece of furniture and the capacities C1 and C2 of the two cars, how many trips to the new house does the party have to make to move all the furniture? If a car has capacity C, the sum of the weights of all the furniture it loads for one trip can be at most C.
Input
The first line contains the number of scenarios. Each scenario consists of one line containing three numbers n, C1 and C2. C1 and C2 are the capacities of the cars (1 ≤ Ci ≤ 100) and n is the number of pieces of furniture (1 ≤ n ≤ 10). The following line will contain n integers w1, …, wn, the weights of the furniture (1 ≤ wi ≤ 100). It is guaranteed that each piece of furniture can be loaded by at least one of the two cars.
Output
The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line with the number of trips to the new house they have to make to move all the furniture. Terminate each scenario with a blank line.
Sample Input
2
6 12 13
3 9 13 3 10 11
7 1 100
1 2 33 50 50 67 98
Sample Output
Scenario #1:
2 Scenario #2:
3
思路:
- 题目给出, 一共 10 件家具, 所以可以使用状态压缩描述家具被装走的情况
 - 检查所有的状态(共 1<<n), 并判断其能够被 2 辆车一次带走, 可以的状态存储到 state 数组
 - 对 state 数组进行01 背包, 状态转移方程为 dp[s|state] = min(dp[s|state], dp[state]+1), 显然是个 push 的过程
 
总结:
- 状态比较少时, 应该形成考虑状态压缩的思维定式, 就像 n<15 时可以暴力破解一样
 - 状态转移方程有 push 和 pull 两种, push 是指根据当前状态s来更新另一个状态 news; pull 是指通过另一个状态来更新当前状态
 - 在思路(3)的状态转移方程中可以看出, 当前状态是 state, 另一个状态是 s|state, 所以是 push
 - 处理状态压缩问题时, 读入的数组从 0 开始比较好, 因为 1<<I, I 总是从0 开始的
 - 代码第 48 行, 没判断 j &(state[i]) 导致 TLE 一次
 
代码:
#include <iostream>
using namespace std; const int INF = 0X3F3F3F3F;
const int MAXN = 10 + 1<<11;
int N, C1, C2;
int a[15];
bool dp[MAXN];
int dp2[MAXN];
int state[MAXN]; bool check(const int &s) {
memset(dp, 0, sizeof(dp));
dp[0] = true;
int sum = 0;
for(int i = 0; i < N; i ++) {
if(s & (1<<i)) { // 第 i 位为 1
sum += a[i];
for(int j = C1; j >= a[i]; j--) { // 背包的容量是 C1, 01背包逆序遍历
if(dp[j-a[i]])
dp[j] = true;
}
}
}
for(int i = 0; i <= sum; i++) { // 本来写成 C1
if(dp[i] && sum-i <= C2) {
return true;
}
}
return false;
} int solve_dp() {
memset(state, 0, sizeof(state));
int len = 0;
int inf = 1<<N;
for(int i = 0; i <= inf; i ++) { // <=
if(check(i))
state[len++] = i;
} // 第二次背包
memset(dp2, 0x3f, sizeof(dp2)); // 初始化为 INF
dp2[0] = 0;
for(int i = 0; i < len; i ++) {
for(int j = inf; j >= 0; j --) {
if(!(j & (state[i]))) {
dp2[j|state[i]] = min(dp2[j|state[i]], dp2[j]+1);
}
}
}
return dp2[(1<<N)-1];
}
int main() {
freopen("E:\\Copy\\ACM\\测试用例\\in.txt", "r", stdin);
int testcase;
cin >> testcase;
int tc = 0;
while(testcase--) {
tc++;
scanf("%d%d%d", &N, &C1, &C2);
for(int i = 0; i < N; i ++) {
scanf("%d", &a[i]);
}
// solve
printf("Scenario #%d:\n%d\n\n", tc, solve_dp());
}
return 0;
}
update 2014年3月14日15:30:07
1. 总结 (5), 为什么不添加判断会超时? 假如不添加判断, 那么当 j&state[i] != 0 时也会执行状态转移方程. 考虑状态 state[k] 是 state[i] 的子集, 同时 j&state[k] == 0, 那么
j|state[i] == j|state[j] 同时 dp[j|state[i]] >= dp[j|state[k]], 所以对 j&state[i] != 0 的 case, 直接 continue 就好
POJ 2923 Relocation(01背包变形, 状态压缩DP)的更多相关文章
- POJ 2923 Relocation 装车问题 【状态压缩DP】+【01背包】
		
题目链接:https://vjudge.net/contest/103424#problem/I 转载于:>>>大牛博客 题目大意: 有 n 个货物,并且知道了每个货物的重量,每次用 ...
 - POJ 2923 【01背包+状态压缩/状压DP】
		
题目链接 Emma and Eric are moving to their new house they bought after returning from their honeymoon. F ...
 - poj 2441 Arrange the Bulls(状态压缩dp)
		
Description Farmer Johnson's Bulls love playing basketball very much. But none of them would like to ...
 - POJ   1185 炮兵阵地    经典的 状态压缩dp
		
炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 16619 Accepted: 6325 Description ...
 - poj 2411 Mondriaan's Dream(状态压缩dp)
		
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...
 - POJ 2411 Mondriaan's Dream [经典状态压缩dp]
		
题意:略. 思路:这一题开始做的时候完全没有思路,便去看了别人的题解. 首先,对于这个题目解法想有一个初步的了解,请看这里:http://www.2cto.com/kf/201208/146894.h ...
 - POJ 1837 Balance(01背包变形, 枚举DP)
		
Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...
 - POJ 2441 Arrange the Bulls(状态压缩DP)
		
题意很简单,n头牛,m个位置,每头牛有各自喜欢的位置,问安排这n头牛使得每头牛都在各自喜欢的位置有几种安排方法. 2000MS代码: #include <cstdio> #include ...
 - POJ 2836:Rectangular Covering(状态压缩DP)
		
题目大意:在一个平面内有若干个点,要求用一些矩形覆盖它们,一个矩形至少覆盖两个点,可以相互重叠,求矩形最小总面积. 分析: 数据很小,很容易想到状压DP,我们把点是否被覆盖用0,1表示然后放在一起得到 ...
 
随机推荐
- 如何在Windows环境搭建Object C开发环境
			
1. 安装编译环境 Object C和其他很多语言一样,都需要有一个编译器.Object C 是在GCC下编译的.GCC(GNU Compiler Collection,GNU编译器集合),是一套由 ...
 - kafka之partition分区及副本replica升级
			
修改kafka的partition分区 bin/kafka-topics.sh --zookeeper datacollect-2:2181 --alter --partitions 3 --topi ...
 - 在linux命令行输出颜色
			
示例: #include <stdio.h> int main() { printf("\e[31;1m Hello, world! \e[0m\n"); } 也就是说 ...
 - python 字典格式嵌套,相同项做叠加
			
all_dict = {} for tg_id in ['com.qq_a','com.qq_b','com.qq_c','com.qq_c']: tmp_dict = all_dict.get(tg ...
 - Android开发日记(五)
			
从服务器端传递多个数据 先在服务器端设置cs文件 using Newtonsoft.Json; using Newtonsoft.Json.Linq; using System; using Syst ...
 - 一款javascript实现的超炫的下拉选择框
			
今天为给大家带来一款javascript实现的超炫的下拉选择框.下拉的列表由半用透明的幽灵按钮组成.显示下拉的时候,列表项由左右两侧飞入.消息时飞向左右两侧.一起看下效果图 在线预览 源码下载 实 ...
 - 关于Java开发过程中质量提升-2自动化
			
开发人员写代码过程中就实现自动代码检视,编辑器会提示编码规范错误,并给出正确实例,写完代码只需要提交到SVN库,然后启动自动化构建(可配置代码提交SVN后自动触发),测试环境中的项目马上和当前SVN库 ...
 - C语言  ·  回形取数
			
基础练习 回形取数 时间限制:1.0s 内存限制:512.0MB 问题描述 回形取数就是沿矩阵的边取数,若当前方向上无数可取或已经取过,则左转90度.一开始位于矩阵左上角,方向向 ...
 - uboot中MAC网络(待续)
			
start ->start_armboot ->main_loop 实际应用中问题:为什么从nandflash读出的MAC(写到物理phy上)与上层网口地址不同(上层网口采用env的mac ...
 - 六步破解win2008R2登录密码
			
防火墙没有开启,win2008R被当成矿机,只好重新破解密码进去解决问题,试了好多方法,下列方法绝对实用简单. 破解2008登录密码的方法: 1.进入PE2.找到文件:windows\system32 ...