hdu 6400 Parentheses Matrix
- an empty sequence is balanced;
- if A is balanced, then (A) is also balanced;
- if A and B are balanced, then AB is also balanced.
For example, the following parentheses matrix is a 2×4 matrix with goodness 3, because the second row, the second column and the fourth column are balanced:
)()(
()()
Now, give you the width and the height of the matrix, please construct a parentheses matrix with maximum goodness.
Each test case is a single line of two integers h,w (1≤h,w≤200), the height and the width of the matrix, respectively.
1 1
2 2
2 3
()
)(
(((
)))
首先贪心一下,起点位于第一行和第一列,所以应该尽量在这些位置填'(',首先想到的是把矩形的左上边界填充为'(',右下边界填充为')'
因为第一行,第n行,第1列,第m列一定不是序列,所以这样最多有n+m-4个合法括号序列。

但有一个情况比较特殊,当n=4的时候,上面的方法其实比较亏,以牺牲第一列和最后一列的代价,却只得到了两行合法括号序列。考虑另外一种填充方法:当n比较小的时候,把第一行全部填充为'(',最后一行全部填充为')'

这样以后发现,可以通过调整剩下的位置,让剩下一半的行数成为合法的序列,于是这样最多有(n-2)/2+m=n/2-1+m个合法括号序列
比较一下上面两种方案,因为n和m是可以互换的,不妨假设m>n,第一种方案最多有m+n-4个合法序列,第二种方案最多应该有m+n/2-1,当他们相等时,m+n-4=m+n/2-1,解得n=6,也就是n,m较小的那个比6小的时候,采用第二种方案可以获得更多序列,而n,m都大于等于6的时候应该选择第一种情况。
#include<stdio.h> char w[][];
#define min(a,b) ((a)<(b)?(a):(b))
int main(){
int kase;
int n,m;
scanf("%d",&kase);
while(kase--) {
scanf("%d %d",&n,&m);
if((n&)&&(m&)){/*奇数行 奇数列 0个*/
for(int i=;i<n;++i)
for(int j=;j<m;++j)w[i][j]='('; }
else if(n&){/*奇数行 偶数列 n个*/
for(int i=;i<n;++i){
w[i][]='(';
for(int j=;j<m;++j)
w[i][j]='('+')'-w[i][j-];
}
}
else if(m&){/*偶数行 奇数列 m个*/
for(int j=;j<m;++j){
w[][j]='(';
for(int i=;i<n;++i)
w[i][j]='('+')'-w[i-][j];
}
}
else {/*偶数行 偶数列*/
if(min(n,m)<=){/*选择方案2*/
if(n>m){//行多,n+m/2-1个
for(int i=;i<n;++i)w[i][]='(';
for(int j=;j<m-;++j){
w[][j]='('+')'-w[][j-];
for(int i=;i<n;++i)w[i][j]='('+')'-w[i-][j];
}
for(int i=;i<n;++i)w[i][m-]=')';
}
else {//列多,m+n/2-1个
for(int j=;j<m;++j)w[][j]='(';
for(int i=;i<n-;++i){
w[i][]='('+')'-w[i-][];
for(int j=;j<m;++j)w[i][j]='('+')'-w[i][j-];
}
for(int j=;j<m;++j)w[n-][j]=')';
}
}
else {//偶数行,偶数列 列+行-4个
w[][]='(';w[][m-]=')';
w[n-][]='(';w[n-][m-]=')';
for(int j=;j<m-;++j){//
w[][j]='(';w[n-][j]=')';
}
for(int i=;i<n-;++i){
w[i][]='(';w[i][m-]=')';
}
for(int i=;i<n-;++i){
w[i][]='('+')'-w[i-][];
for(int j=;j<m-;++j){
w[i][j]='('+')'-w[i][j-];
}
}
}
}
/*输出*/
for(int i=;i<n;++i){
for(int j=;j<m;++j)
printf("%c",w[i][j]);
printf("\n");
}
}
}
但是,当行/列数较小的时候,牺牲一半的行/列不一定是坏事,应该特判一下
hdu 6400 Parentheses Matrix的更多相关文章
- HDU - 6400 多校8 Parentheses Matrix(构造)
Parentheses Matrix Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Oth ...
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- HDU 4965 Fast Matrix Calculation(矩阵高速幂)
HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个 ...
- hdu多校第八场Parentheses Matrix
#include<bits/stdc++.h> using namespace std; ][]; int main() { int t; scanf("%d",&am ...
- 矩阵乘法 --- hdu 4920 : Matrix multiplication
Matrix multiplication Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/ ...
- hdu 4965 Fast Matrix Calculation
题目链接:hdu 4965,题目大意:给你一个 n*k 的矩阵 A 和一个 k*n 的矩阵 B,定义矩阵 C= A*B,然后矩阵 M= C^(n*n),矩阵中一切元素皆 mod 6,最后求出 M 中所 ...
- hdu 5015 233 Matrix(构造矩阵)
http://acm.hdu.edu.cn/showproblem.php?pid=5015 由于是个二维的递推式,当时没有想到能够这样构造矩阵.从列上看,当前这一列都是由前一列递推得到.依据这一点来 ...
- HDU 3666.THE MATRIX PROBLEM 差分约束系统
THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
随机推荐
- Kali linux更新源
1.更新软件源: 修改sources.list文件: leafpad /etc/apt/sources.list 然后选择添加以下适合自己较快的源(可自由选择,不一定要全部): #官方源deb htt ...
- C#:通过NuGet程序包下载CefSharp来加载谷歌浏览器
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 首先我讲明一下我要做的,公司有个C# wpf的项目需要我把一个开发好的网页嵌入到客户端当中,由于种种原因,我放 ...
- python 内置模块(os)
1.OS os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径os.chdir("dirname") 改变当前脚本工作目录:相当于shell下cdos. ...
- cogs1341 永无乡
cogs1341 永无乡 打了一发替罪羊树. 鬼故事:替罪羊树去掉重构(变成裸的二叉排序树)依然跑得过= = 启发式合并.每次把小的里面所有东西往大的里面一丢,每个点最多被丢\(log_2n\)次(丢 ...
- 使用Nexus搭建Maven私服问题总结
#业务场景 最近项目要交付给客户了,之前项目开发和测试一直都是使用公司内部的一套环境,项目交付后客户购置了大量服务器,也要将整套测试环境迁移至客户的服务器上,后续的需求变更以及新需求的开发都会在客户服 ...
- VS2013只显示会附加到进程,无法启动调试
今天在使用VS2013的时候,打开突然发现,只显示附加到进程,无法进行调试,调试位置显示灰色,到网上各处寻求答案,本以为是个大问题,没想到只是个小问题.主要原因只是后台开太多东西了,导致VS2013运 ...
- UGUI简易摇杆
实现 直接使用系统自带圆形控件图标 编写脚本, 实现UGUI拖拽事件 将多拽范围限定于给定半径和圆心的圆内 计算出等同于Input.GetAxis()的值,直接控制被控制物体 代码 using Sys ...
- Python20-Day01
简述编译型与解释型语言的区别,且分别列出你知道的哪些语言属于编译型,哪些属于解释 编译型语言是一种以编译器来实现的编程语言,优缺点:执行速度快,调试麻烦 编译型语言:Java,Go,C,C++ 解释性 ...
- 如何使用HtmlTestRunner让自动化测试报告内容更丰富
原文出自:http://www.cnblogs.com/tsbc/p/4128150.html 简述 使用selenium webdriver + Python做自动化测试,执行完成后要生成测试报告, ...
- Scrum立会报告+燃尽图(十一月二十四日总第三十二次):视频剪辑
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...