BZOJ 3626 LCA(离线+树链剖分)
首先注意到这样一个事实。
树上两个点(u,v)的LCA的深度,可以转化为先将u到根路径点权都加1,然后求v到根路径上的总点权值。
并且该题支持离线。那么我们可以把一个区间询问拆成两个前缀和形式的询问。
现在问题就变成了求[1,r]和x的LCA深度之和。实际上就是把[1,r]到根路径点权点1,然后求x到根路径上的总权值。
我们按编号从小往大依次加路径点权。然后就可以有序处理询问。用树链剖分维护的话,总复杂度为O((n+q)lognlogn).
BZOJ 3626 LCA(离线+树链剖分)的更多相关文章
- bzoj 3626: [LNOI2014]LCA 离线+树链剖分
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 426 Solved: 124[Submit][Status] ...
- 【BZOJ3626】[LNOI2014]LCA 离线+树链剖分+线段树
[BZOJ3626][LNOI2014]LCA Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度 ...
- [BZOJ3626] [LNOI2014] LCA 离线 树链剖分
题面 考虑到询问的\(l..r,z\)具有可减性,考虑把询问差分掉,拆成\(r,z\)和\(l-1,z\). 显然这些LCA一定在\(z\)到根的路径上.下面的问题就是怎么统计. 考虑不是那么暴力的暴 ...
- 【BZOJ3626】LCA(树链剖分,Link-Cut Tree)
[BZOJ3626]LCA(树链剖分,Link-Cut Tree) 题面 Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. ...
- BZOJ 3626 LCA(离线+树链剖分+差分)
显然,暴力求解的复杂度是无法承受的. 考虑这样的一种暴力,我们把 z 到根上的点全部打标记,对于 l 到 r 之间的点,向上搜索到第一个有标记的点求出它的深度统计答案.观察到,深度其实就是上面有几个已 ...
- BZOJ 3626 离线+树链剖分+线段树
思路: 抄一波yousiki的- 显然,暴力求解的复杂度是无法承受的. 考虑这样的一种暴力,我们把 z 到根上的点全部打标记,对于 l 到 r 之间的点,向上搜索到第一个有标记的点求出它的深度统计答案 ...
- BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- [BZOJ - 2819] Nim 【树链剖分 / DFS序】
题目链接: BZOJ - 2819 题目分析 我们知道,单纯的 Nim 的必胜状态是,各堆石子的数量异或和不为 0 .那么这道题其实就是要求求出树上的两点之间的路径的异或和.要求支持单点修改. 方法一 ...
- BZOJ.4515.[SDOI2016]游戏(树链剖分 李超线段树)
BZOJ 洛谷 每次在路径上加的数是个一次函数,容易看出是树剖+李超线段树维护函数最小值.所以其实依旧是模板题. 横坐标自然是取个确定的距离标准.取每个点到根节点的距离\(dis[i]\)作为\(i\ ...
随机推荐
- 2016-2017-2 20155338 实验二《Java面向对象程序设计》实验报告
2016-2017-2 20155338 实验二<Java面向对象程序设计>实验报告 实验内容: 1.初步掌握单元测试和TDD 2.理解并掌握面向对象三要素:封装.继承.多态 3.初步掌握 ...
- day 7 __new___
1 __new__方法 创建对象 实质是:调用父类的__new__方法创建的对象 class Dog(object): def __init__(self): print("---init方 ...
- bzoj1011 遥远的行星
bzoj1011 遥远的行星 原题链接 题解 一道真正的玄学题.... 其实这题根本没法做 首先暴力这么跑:\[ans(s)=\sum_{i=1}^{\lfloor As\rfloor}\frac{M ...
- Windows Powershell统计代码行数
dir .\ -Recurse *.py | Get-Content | Measure-Object
- 搜索引擎ElasticSearch系列(二): ElasticSearch2.4.4 Head插件安装
一:ElasticSearch Head插件简介 elasticsearch-head is a web front end for browsing and interacting with an ...
- javaweb(十六)——JSP指令
一.JSP指令简介 JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分. 在JSP 2.0规范中共定义了三个指令: pa ...
- JMeter学习笔记(二) 一些实际应用的基础操作
我在CSDN上面找到一位大师整理的jmeter性能测试基础,分享到这里继续学习 https://blog.csdn.net/u011541946/article/category/6893578/1
- jvm之GC知识点
GCRoots: 虚拟机栈(栈帧中的局部变量表)引用的对象 方法区中静态属性引用的对象 方法去中常量引用的对象 本地方法栈中JNI(NATIVE方法) ...
- 《More Effective C++ 》读书笔记(二)Exception 异常
这事篇读书笔记,只记录自己的理解和总结,一般情况不对其举例子具体说明,因为那正是书本身做的事情,我的笔记作为梳理和复习之用,划重点.我推荐学C++的人都好好读一遍Effective C++ 系列,真是 ...
- SVN部署与简单使用
原文发表于cu:2016-05-24 参考文档: http://www.tuicool.com/articles/Yv2iyu7 http://www.centoscn.com/CentosServe ...