题意:给出一棵树,两个给给的人在第\(i\)天会从节点\(i\)沿着最长路径走,求最长的连续天数\([L,R]\)使得\([L,R]\)为起点的最长路径极差不超过m

求\(1\)到\(n\)的最长路经可用树形DP求解,

设\(f[i]\):\(i\)的子树下到\(i\)的最远距离

\(g[i]\):\(i\)子树下除了\(f[i]\)子树以外的最远距离

\(h[i]\):除了\(i\)子树以外到\(i\)的最远距离

\(h[i]\)从父到儿子的转移需要判断\(i\)到底是\(fa\)的最远距离所在边还是次远距离所在边(可相等),还有直接来自父亲以上\(h[fa]\)的转移

搞完后求极差就用二分+RMQ强行求出来,注意初始化需要f和h的对比

题目简单但要细心

#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define fastIO ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define println(x) printf("%lld\n",(ll)(x))
using namespace std;
typedef long long ll;
const int MAXN = 1e6+11;
const int MOD = 142857;
const int INF = 1<<30; int to[MAXN<<1],nxt[MAXN<<1],head[MAXN],tot;
int cost[MAXN<<1];
int n,m;
void init(int n){memset(head,-1,(n+2)*sizeof(int)),tot=0;}
void add(int u,int v,ll w){
to[tot]=v;
cost[tot]=w;
nxt[tot]=head[u];
head[u]=tot++;
}
int f[MAXN],g[MAXN],h[MAXN];
int mx[MAXN][22],mn[MAXN][22];
void DP0(int u,int fa){
f[u]=g[u]=h[u]=0;
for(int i=head[u];~i;i=nxt[i]){
int v=to[i]; ll w=cost[i];
if(v==fa) continue;
DP0(v,u);
if(f[v]+w>f[u]){
g[u]=f[u]; //次长子树
f[u]=f[v]+w; //最长子树
}else if(f[v]+w>g[u]){
g[u]=f[v]+w;
}
}
}
void DP1(int u,int fa){
for(int i=head[u];~i;i=nxt[i]){
int v=to[i]; ll w=cost[i];
if(v==fa) continue;
if(f[u]-w==f[v]) h[v]=max(h[u]+w,g[u]+w);//本身v作为儿子是f[u]的最大值,那就从u的次大子树中转移
else h[v]=max(h[u]+w,f[u]+w);
DP1(v,u);
}
}
ll C(int lo,int hi){
int k=log2(hi-lo+1);
return max(mx[lo][k],mx[hi-(1<<k)+1][k])
-min(mn[lo][k],mn[hi-(1<<k)+1][k]);
}
int gao(int st){
int lo=st,hi=n;
while(lo<hi){
int mid=lo+(hi-lo+1)/2;
if(C(st,mid)<=m) lo=mid;
else hi=mid-1;
}
return C(st,lo)?lo:lo-1;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("stdin.txt","r",stdin);
#endif
while(~scanf("%d%d",&n,&m)){
init(n);
for(int i=2;i<=n;i++){
int fi;ll di;
scanf("%d%lld",&fi,&di);
add(i,fi,di);
add(fi,i,di);
}
DP0(1,-1);
DP1(1,-1);
for(int i=1;i<=n;i++){
mx[i][0]=mn[i][0]=max(f[i],h[i]);//f[]只考虑子树内,h[]只考虑子树外
}
int t=log2(n);
for(int i=1;i<=t;i++){
for(int j=1;j<=n;j++){
mx[j][i]=max(mx[j][i-1],mx[j+(1<<i-1)][i-1]);
mn[j][i]=min(mn[j][i-1],mn[j+(1<<i-1)][i-1]);
}
}
int ans=0;
for(int i=1;i<=n;i++){
int hi=gao(i);
ans=max(ans,hi-i+1);
}
println(ans);
}
return 0;
}

BZOJ - 2500 树形DP乱搞的更多相关文章

  1. Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2)(A.暴力,B.优先队列,C.dp乱搞)

    A. Carrot Cakes time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  2. 2016 10 28考试 dp 乱搞 树状数组

    2016 10 28 考试 时间 7:50 AM to 11:15 AM 下载链接: 试题 考试包 这次考试对自己的表现非常不满意!! T1看出来是dp题目,但是在考试过程中并没有推出转移方程,考虑了 ...

  3. BZOJ 1040 树形DP+环套树

    就是有n个点n条边,那么有且只有一个环那么用Dfs把在环上的两个点找到.然后拆开,从这条个点分别作树形Dp即可. #include <cstdio> #include <cstrin ...

  4. BZOJ 4033 树形DP

    http://blog.csdn.net/mirrorgray/article/details/51123741 安利队长blog- 树形dp吧,状态挺显然的,dp[x][j]表示以x为根的子树中,选 ...

  5. BZOJ 4987 (树形DP)

    ###题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4987 ###分析 先考虑贪心,显然k个节点形成一棵树 求出树的直径,显然直径应该只被经 ...

  6. bzoj 3573: [Hnoi2014]米特运输【树形dp+瞎搞】

    阅读理解题,题意是以1为根的有根树,每个点有点权,求修改最少点权能使每个点的权值等于其所有子节点权值之和并且每个点的所有子节点权值相等的个数 然后就比较简单了,就是有个技巧是数太大,需要对所有操作都取 ...

  7. HZOJ 20190727 T2 单(树上dp+乱搞?+乱推式子?+dfs?)

    考试T2,考试时想到了40pts解法,即对于求b数组,随便瞎搞一下就oxxk,求a的话,很明显的高斯消元,但考试时不会打+没开double挂成10pts(我真sb),感觉考试策略还是不够成熟,而且感觉 ...

  8. bzoj 2217 [Poi2011]Lollipop 乱搞 贪心

    2217: [Poi2011]Lollipop Time Limit: 15 Sec  Memory Limit: 64 MBSec  Special JudgeSubmit: 383  Solved ...

  9. [BZOJ4011][HNOI2015]落忆枫音-[dp乱搞+拓扑排序]

    Description 传送门 Solution 假如我们的图为DAG图,总方案数ans为每个点的入度In相乘(不算1号点).(等同于在每个点的入边选一条边,最后一定构成一棵树). 然而如果加了边x- ...

随机推荐

  1. 在Eclipse中使用Struts和Hibernate框架搭建Maven Web项目

    前言 学习使用Java还是2012年的事情,刚开始学习的Java的时候,使用的是MyEclipse工具和SSH框架.初学者适合使用MyEclipse,因为他将struts.Spring和Hiberna ...

  2. Atom 编辑器侧边栏忽略隐藏文件

    设置中配置需要忽略的文件后缀 package中找到treeview,勾选上这个配置就行

  3. 用 Servlet 进行上载的原理和实现

    Servlet 是用 Java 编写的.协议和平台都独立的服务器端组件,使用请求/响应的模式,提供了一个基于 Java 的服务器解决方案.使用 Servlet 可以方便地处理在 HTML 页面表单中提 ...

  4. cocos2dx的addChild接口设计

    addChild的几个重载函数挺容易用错的 主要是因为cocos2dx用来给游戏对象设置标签时,用的是整型而不是字符串 导致标签这个参数很容易和同样是使用整型的代表游戏对象的层级关系的参数混淆.

  5. EJB学习手记

    周末两天,看了两天的ejb知识.公司有个转发消息的程序,里面是根据ejb/jms+cdi/event做的,这些之前没接触过. 总而言之,从中学到了很多东西,从ejb到webservice. jboss ...

  6. yum初识

    yum仓库中的元数据文件: primary.xml.gz 所有RPM包的列表: 依赖关系: 每个RPM安装生成的文件列表: filelists.xml.gz 当前仓库中所有RPM包的所有文件列表: o ...

  7. jquery控制元素的隐藏和显示的几种方法。

    组织略显凌乱,请耐心看! 使用jquery控制div的显示与隐藏,一句话就能搞定,例如: 1.$("#id").show()表示为display:block, $("#i ...

  8. 兼容性测试中如何切换和管理多个JDK版本

    本文由作者邹珍珍授权网易云社区发布. 一.测试背景: 项目对外提供JAR包,需要测试该JAR包对不同JDK版本(1.6至1.9版本)的兼容性.下面主要介绍在兼容性测试中,JDK多版本共存时如何配置环境 ...

  9. 自己的Java规范文档

    参考阿里Java规范文档 不建议使用过时方法 泛型需要加上<>,这种方式创建的对象是不推荐的. Map object = new HashMap();//禁止使用 字符串比较时,不需要大小 ...

  10. ClamAV学习【8】——64位Windows7下编译运行实践

    之前用SourceInsight静态分析了ClamAV引擎源码,现在打算开始动态研究下.不过出师不利,一开始就遇到纠结的问题,能力还有待提高. 从官网下了一个VS2005工程的源码包(http://d ...