题意:给出一棵树,两个给给的人在第\(i\)天会从节点\(i\)沿着最长路径走,求最长的连续天数\([L,R]\)使得\([L,R]\)为起点的最长路径极差不超过m

求\(1\)到\(n\)的最长路经可用树形DP求解,

设\(f[i]\):\(i\)的子树下到\(i\)的最远距离

\(g[i]\):\(i\)子树下除了\(f[i]\)子树以外的最远距离

\(h[i]\):除了\(i\)子树以外到\(i\)的最远距离

\(h[i]\)从父到儿子的转移需要判断\(i\)到底是\(fa\)的最远距离所在边还是次远距离所在边(可相等),还有直接来自父亲以上\(h[fa]\)的转移

搞完后求极差就用二分+RMQ强行求出来,注意初始化需要f和h的对比

题目简单但要细心

#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define fastIO ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define println(x) printf("%lld\n",(ll)(x))
using namespace std;
typedef long long ll;
const int MAXN = 1e6+11;
const int MOD = 142857;
const int INF = 1<<30; int to[MAXN<<1],nxt[MAXN<<1],head[MAXN],tot;
int cost[MAXN<<1];
int n,m;
void init(int n){memset(head,-1,(n+2)*sizeof(int)),tot=0;}
void add(int u,int v,ll w){
to[tot]=v;
cost[tot]=w;
nxt[tot]=head[u];
head[u]=tot++;
}
int f[MAXN],g[MAXN],h[MAXN];
int mx[MAXN][22],mn[MAXN][22];
void DP0(int u,int fa){
f[u]=g[u]=h[u]=0;
for(int i=head[u];~i;i=nxt[i]){
int v=to[i]; ll w=cost[i];
if(v==fa) continue;
DP0(v,u);
if(f[v]+w>f[u]){
g[u]=f[u]; //次长子树
f[u]=f[v]+w; //最长子树
}else if(f[v]+w>g[u]){
g[u]=f[v]+w;
}
}
}
void DP1(int u,int fa){
for(int i=head[u];~i;i=nxt[i]){
int v=to[i]; ll w=cost[i];
if(v==fa) continue;
if(f[u]-w==f[v]) h[v]=max(h[u]+w,g[u]+w);//本身v作为儿子是f[u]的最大值,那就从u的次大子树中转移
else h[v]=max(h[u]+w,f[u]+w);
DP1(v,u);
}
}
ll C(int lo,int hi){
int k=log2(hi-lo+1);
return max(mx[lo][k],mx[hi-(1<<k)+1][k])
-min(mn[lo][k],mn[hi-(1<<k)+1][k]);
}
int gao(int st){
int lo=st,hi=n;
while(lo<hi){
int mid=lo+(hi-lo+1)/2;
if(C(st,mid)<=m) lo=mid;
else hi=mid-1;
}
return C(st,lo)?lo:lo-1;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("stdin.txt","r",stdin);
#endif
while(~scanf("%d%d",&n,&m)){
init(n);
for(int i=2;i<=n;i++){
int fi;ll di;
scanf("%d%lld",&fi,&di);
add(i,fi,di);
add(fi,i,di);
}
DP0(1,-1);
DP1(1,-1);
for(int i=1;i<=n;i++){
mx[i][0]=mn[i][0]=max(f[i],h[i]);//f[]只考虑子树内,h[]只考虑子树外
}
int t=log2(n);
for(int i=1;i<=t;i++){
for(int j=1;j<=n;j++){
mx[j][i]=max(mx[j][i-1],mx[j+(1<<i-1)][i-1]);
mn[j][i]=min(mn[j][i-1],mn[j+(1<<i-1)][i-1]);
}
}
int ans=0;
for(int i=1;i<=n;i++){
int hi=gao(i);
ans=max(ans,hi-i+1);
}
println(ans);
}
return 0;
}

BZOJ - 2500 树形DP乱搞的更多相关文章

  1. Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2)(A.暴力,B.优先队列,C.dp乱搞)

    A. Carrot Cakes time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  2. 2016 10 28考试 dp 乱搞 树状数组

    2016 10 28 考试 时间 7:50 AM to 11:15 AM 下载链接: 试题 考试包 这次考试对自己的表现非常不满意!! T1看出来是dp题目,但是在考试过程中并没有推出转移方程,考虑了 ...

  3. BZOJ 1040 树形DP+环套树

    就是有n个点n条边,那么有且只有一个环那么用Dfs把在环上的两个点找到.然后拆开,从这条个点分别作树形Dp即可. #include <cstdio> #include <cstrin ...

  4. BZOJ 4033 树形DP

    http://blog.csdn.net/mirrorgray/article/details/51123741 安利队长blog- 树形dp吧,状态挺显然的,dp[x][j]表示以x为根的子树中,选 ...

  5. BZOJ 4987 (树形DP)

    ###题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4987 ###分析 先考虑贪心,显然k个节点形成一棵树 求出树的直径,显然直径应该只被经 ...

  6. bzoj 3573: [Hnoi2014]米特运输【树形dp+瞎搞】

    阅读理解题,题意是以1为根的有根树,每个点有点权,求修改最少点权能使每个点的权值等于其所有子节点权值之和并且每个点的所有子节点权值相等的个数 然后就比较简单了,就是有个技巧是数太大,需要对所有操作都取 ...

  7. HZOJ 20190727 T2 单(树上dp+乱搞?+乱推式子?+dfs?)

    考试T2,考试时想到了40pts解法,即对于求b数组,随便瞎搞一下就oxxk,求a的话,很明显的高斯消元,但考试时不会打+没开double挂成10pts(我真sb),感觉考试策略还是不够成熟,而且感觉 ...

  8. bzoj 2217 [Poi2011]Lollipop 乱搞 贪心

    2217: [Poi2011]Lollipop Time Limit: 15 Sec  Memory Limit: 64 MBSec  Special JudgeSubmit: 383  Solved ...

  9. [BZOJ4011][HNOI2015]落忆枫音-[dp乱搞+拓扑排序]

    Description 传送门 Solution 假如我们的图为DAG图,总方案数ans为每个点的入度In相乘(不算1号点).(等同于在每个点的入边选一条边,最后一定构成一棵树). 然而如果加了边x- ...

随机推荐

  1. [SoapUI] 如何让gzip和chunked的response显示出来 [设置Accept-Encoding为deflate]

    如果response的Content-Encoding是gzip或者Transfer-Encoding是chunked,在SoapUI里面是无法显示出来的. 解决办法:在Request的Header里 ...

  2. python获取参数

    argparse是python的一个命令行参数模块,可以解析命令行参数,生成帮助. 示例: #!/usr/bin/python from argparse import ArgumentParser ...

  3. IntelliJ IDEA 2017版 SpringBoot的Json字符串返回

    一.说明 SpringBoot框架已经自动封装好json字符串解析,所以我们只需要用它的注解来返回操作就可以了. 二.实战 1.书写一个实体类User,设置属性id和name package com. ...

  4. 看图说说class文件结构(部分)

  5. UISwitch的常见属性

    1.onTintColor属性:设置ON一边的背景颜色,默认是绿色. 2.tintColor属性:设置OFF一边的背景颜色,默认是灰色,发现OFF背景颜色其实也是控件”边框“颜色. 3.thumbTi ...

  6. 饿了么 PostgreSQL 优化之旅

    1. 架构演变 在O2O外卖领域,基于位置服务的需求越来越多,这就要求DB能够存储地理位置信息,而在开源数据库中,对空间地理数据支持比较好的要数PG的插件Postgis. 饿了么在使用PG的过程中,由 ...

  7. Linux服务器使用XShell上传下载文件

    在学习Linux过程中,我们常常需要将本地文件上传到Linux主机上,这里简单记录下使用Xsheel工具进行文件传输 1:首先连接上一台Linux主机 2:输入rz命令,看是否已经安装了lrzsz,如 ...

  8. 疑难杂症--SQL SERVER 18056的错误

    朋友遇到一个很棘手的问题,查看服务器日志,报以下错误: ::,spid296,未知,错误: ,严重性: ,状态: . ::,spid495,未知, The client was unable < ...

  9. 使用NPOI时ICSharpCode.SharpZipLib版本冲突问题解决

    系统原来引用的ICSharpCode.SharpZipLib是0.84版本的, 添加了2.3版本的NPOI引用后,报版本冲突错误,因为NPOI用的ICSharpCode.SharpZipLib是0.8 ...

  10. 安装OWA2013

    首先可以参考以下博客进行安装 http://www.cnblogs.com/poissonnotes/p/3238238.html 需要特别注意的是,我的SHAREPOINT系统虽然是英文版的,但是同 ...