Hadoop Metrics2
Metrics are collections of information about Hadoop daemons, events and measurements; for example, data nodes collect metrics such as the number of blocks replicated, number of read requests from clients, and so on. For that reason, metrics are an invaluable resource for monitoring Apache Hadoop services and an indispensable tool for debugging system problems.
This blog post focuses on the features and use of the Metrics2 system for Hadoop, which allows multiple metrics output plugins to be used in parallel, supports dynamic reconfiguration of metrics plugins, provides metrics filtering, and allows all metrics to be exported via JMX.
Metrics vs. MapReduce Counters
When speaking about metrics, a question about their relationship to MapReduce counters usually arises. This differences can be described in two ways: First, Hadoop daemons and services are generally the scope for metrics, whereas MapReduce applications are the scope for MapReduce counters (which are collected for MapReduce tasks and aggregated for the whole job). Second, whereas Hadoop administrators are the main audience for metrics, MapReduce users are the audience for MapReduce counters.
Contexts and Prefixes
For organizational purposes metrics are grouped into named contexts – e.g., jvm for java virtual machine metrics or dfs for the distributed file system metric. There are different sets of contexts supported by Hadoop-1 and Hadoop-2; the table below highlights the ones supported for each of them.
Branch-1 |
Branch-2 |
– jvm – rpc – rpcdetailed – metricssystem – mapred – dfs – ugi |
– yarn – jvm – rpc – rpcdetailed – metricssystem – mapred – dfs – ugi |
A Hadoop daemon collects metrics in several contexts. For example, data nodes collect metrics for the “dfs”, “rpc” and “jvm” contexts. The daemons that collect different metrics in Hadoop (for Hadoop-1 and Hadoop-2) are listed below:
Branch-1 Daemons/Prefixes | Branch-2 Daemons/Prefixes |
– namenode |
– namenode – secondarynamenode – datanode – resourcemanager – nodemanager – mrappmaster – maptask – reducetask |
System Design
The Metrics2 framework is designed to collect and dispatch per-process metrics to monitor the overall status of the Hadoop system. Producers register the metrics sources with the metrics system, while consumers register the sinks. The framework marshals metrics from sources to sinks based on (per source/sink) configuration options. This design is depicted below.
Here is an example class implementing the MetricsSource:
class MyComponentSource implements MetricsSource {
@Override
public void getMetrics(MetricsCollector collector, boolean all) {
collector.addRecord("MyComponentSource")
.setContext("MyContext")
.addGauge(info("MyMetric", "My metric description"), 42);
}
}
The “MyMetric” in the listing above could be, for example, the number of open connections for a specific server.
Here is an example class implementing the MetricsSink:
public class MyComponentSink implements MetricsSink {
public void putMetrics(MetricsRecord record) {
System.out.print(record);
}
public void init(SubsetConfiguration conf) {}
public void flush() {}
}
To use the Metric2s framework, the system needs to be initialized and sources and sinks registered. Here is an example initialization:
DefaultMetricsSystem.initialize(”datanode");
MetricsSystem.register(source1, “source1 description”, new MyComponentSource());
MetricsSystem.register(sink2, “sink2 description”, new MyComponentSink())
Configuration and Filtering
The Metrics2 framework uses the PropertiesConfiguration from the apache commons configuration library.
Sinks are specified in a configuration file (e.g., “hadoop-metrics2-test.properties”), as:
test.sink.mysink0.class=com.example.hadoop.metrics.MySink
[prefix].[source|sink|jmx|].[instance].[option]
In the previous example, test
is the prefix and mysink0
is an instance name. DefaultMetricsSystem
would try to load hadoop-metrics2-[prefix].properties
first, and if not found, try the default hadoop-metrics2.properties
in the class path. Note, the [instance]
is an arbitrary name to uniquely identify a particular sink instance. The asterisk (*) can be used to specify default options.
Here is an example with inline comments to identify the different configuration sections:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
# syntax: [prefix].[source|sink].[instance].[options]
# Here we define a file sink with the instance name “foo”
*.sink.foo.class=org.apache.hadoop.metrics2.sink.FileSink
# Now we specify the filename for every prefix/daemon that is used for
# dumping metrics to this file. Notice each of the following lines is
# associated with one of those prefixes.
namenode.sink.foo.filename=/tmp/namenode-metrics.out
secondarynamenode.sink.foo.filename=/tmp/secondarynamenode-metrics.out
datanode.sink.foo.filename=/tmp/datanode-metrics.out
resourcemanager.sink.foo.filename=/tmp/resourcemanager-metrics.out
nodemanager.sink.foo.filename=/tmp/nodemanager-metrics.out
maptask.sink.foo.filename=/tmp/maptask-metrics.out
reducetask.sink.foo.filename=/tmp/reducetask-metrics.out
mrappmaster.sink.foo.filename=/tmp/mrappmaster-metrics.out
# We here define another file sink with a different instance name “bar”
*.sink.bar.class=org.apache.hadoop.metrics2.sink.FileSink
# The following line specifies the filename for the nodemanager daemon
# associated with this instance. Note that the nodemanager metrics are
# dumped into two different files. Typically you’ll use a different sink type
# (e.g. ganglia), but here having two file sinks for the same daemon can be
# only useful when different filtering strategies are applied to each.
nodemanager.sink.bar.filename=/tmp/nodemanager-metrics-bar.out
|
Here is an example set of NodeManager metrics that are dumped into the NodeManager sink file:
1
2
3
4
5
6
7
|
1349542623843 jvm.JvmMetrics: Context=jvm, ProcessName=NodeManager, SessionId=null, Hostname=ubuntu, MemNonHeapUsedM=11.877365, MemNonHeapCommittedM=18.25, MemHeapUsedM=2.9463196, MemHeapCommittedM=30.5, GcCountCopy=5, GcTimeMillisCopy=28, GcCountMarkSweepCompact=0, GcTimeMillisMarkSweepCompact=0, GcCount=5, GcTimeMillis=28, ThreadsNew=0, ThreadsRunnable=6, ThreadsBlocked=0, ThreadsWaiting=23, ThreadsTimedWaiting=2, ThreadsTerminated=0, LogFatal=0, LogError=0, LogWarn=0, LogInfo=0
1349542623843 yarn.NodeManagerMetrics: Context=yarn, Hostname=ubuntu, AvailableGB=8
1349542623843 ugi.UgiMetrics: Context=ugi, Hostname=ubuntu
1349542623843 mapred.ShuffleMetrics: Context=mapred, Hostname=ubuntu
1349542623844 rpc.rpc: port=42440, Context=rpc, Hostname=ubuntu, NumOpenConnections=0, CallQueueLength=0
1349542623844 rpcdetailed.rpcdetailed: port=42440, Context=rpcdetailed, Hostname=ubuntu
1349542623844 metricssystem.MetricsSystem: Context=metricssystem, Hostname=ubuntu, NumActiveSources=6, NumAllSources=6, NumActiveSinks=1, NumAllSinks=0, SnapshotNumOps=6, SnapshotAvgTime=0.16666666666666669
|
Each line starts with a time followed by the context and metrics name and the corresponding value for each metric.
Filtering
By default, filtering can be done by source, context, record and metrics. More discussion of different filtering strategies can be found in the Javadoc and wiki.
Example:
1
2
3
4
5
6
7
8
9
10
11
|
mrappmaster.sink.foo.context=jvm
# Define the classname used for filtering
*.source.filter.class=org.apache.hadoop.metrics2.filter.GlobFilter
*.record.filter.class=${*.source.filter.class}
*.metric.filter.class=${*.source.filter.class}
# Filter in any sources with names start with Jvm
nodemanager.*.source.filter.include=Jvm*
# Filter out records with names that matches foo* in the source named "rpc"
nodemanager.source.rpc.record.filter.exclude=foo*
# Filter out metrics with names that matches foo* for sink instance "file" only
nodemanager.sink.foo.metric.filter.exclude=MemHeapUsedM
|
Conclusion
The Metrics2 system for Hadoop provides a gold mine of real-time and historical data that help monitor and debug problems associated with the Hadoop services and jobs.
Ahmed Radwan is a software engineer at Cloudera, where he contributes to various platform tools and open-source projects.
Hadoop Metrics2的更多相关文章
- log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory). log4j:WARN Please initialize the log4j system properly. log4j:WARN See http://logging.apache.o
上面的报错是在本地java调试(windows) hadoop集群 出现的 解决方案: 在resources文件夹下面创建一个文件log4j.properties(这个其实hadoop安装目录下的 e ...
- hadoop项目开发运行报错(log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).)
使用hadoop+myeclipse开发项目是测试运行报错: log4j:WARN No appenders could be found for logger (org.apache.hadoop. ...
- 关于log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).的问题
解决办法(非长久之计,折中) 将该方法插入到main函数中,可以自行打印日志信息了 BasicConfigurator.configure(); //自动快速地使用缺省Log4j环境.原文链接:htt ...
- 使用ganglia监控hadoop及hbase集群
一.Ganglia简介 Ganglia 是 UC Berkeley 发起的一个开源监视项目,设计用于测量数以千计的节点.每台计算机都运行一个收集和发送度量数据(如处理器速度.内存使用量等)的名为 gm ...
- hadoop安装及配置入门篇
声明: author: 龚细军 时间: -- 类型: 笔记 转载时请注明出处及相应链接. 链接地址: http://www.cnblogs.com/gongxijun/p/5726024.html 本 ...
- hadoop安装遇到的各种异常及解决办法
hadoop安装遇到的各种异常及解决办法 异常一: 2014-03-13 11:10:23,665 INFO org.apache.hadoop.ipc.Client: Retrying connec ...
- Windows下Eclipse连接hadoop
2015-3-27 参考: http://www.cnblogs.com/baixl/p/4154429.html http://blog.csdn.net/u010911997/article/de ...
- Hadoop 2.2.0学习笔记20131210
伪分布式单节点安装执行pi失败: [root@server- ~]# ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples ...
- Hadoop 2.2.0学习笔记20131209
1.下载java 7并安装 [root@server- ~]# rpm -ivh jdk-7u40-linux-x64.rpm Preparing... ####################### ...
随机推荐
- 结对项目— 词频统计2(语言C++)
结对对象:季天梦 博客地址:http://www.cnblogs.com/jitianmeng/ github链接:https://github.com/liuyutianlyt/EX_4.md 比例 ...
- Sqlite 快速插入数据到本地表中
用原始Insert方法太慢,网上找到了https://www.cnblogs.com/yisen-code/p/6897524.html 思路是: 开启事务,开启预处理,然后把SQL用参数传入具体值来 ...
- 手动编译安装lamp之php
转自马哥教育讲课文档 三.编译安装php-5.4.8 1.解决依赖关系: 请配置好yum源(可以是本地系统光盘)后执行如下命令: # yum -y groupinstall "X Softw ...
- LightOJ 1197 LightOJ 1197(大区间素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1197 题目大意: 就是给你一个区间[a,b]让你求这个区间素数的个数 但a.b的值太大没法直接进 ...
- iOS View 外层奇怪的黑线
最近碰到一个问题,当时是为了建了一个能自动适应内容的 Label.根据内容,我计算出需要的尺寸,然后把新尺寸设置给 Label. 但是显示的时候,一个奇怪的现象出现了,Label 的顶端总是有一条浅浅 ...
- collections模块—— Counter
ounter目的是用来跟踪值出现的次数.它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value.计数值可以是任意的Interger(包括0和负数).Counter类和 ...
- Hibernate 干货2
@ORM框架 对象关系映射,用于实现面向对象编程语言里不同系统的数据之间的转换 @实例public void demo01(){ User user = new User(); user.setU ...
- 《快学Scala》第一章 基础
- 【vue】——CDN或全局引入CSS、JS。
在入口文件index.html中添加 <!DOCTYPE html> <html> <head> <meta charset="utf-8" ...
- HTML实例(四)
实例一:有序列表,无序列表,<dl>,<dt>,<dd>,div块级标签等,实现上面的效果. <!DOCTYPE html> <html lang ...