常州day1p3
给定一个 n 行 m 列的方格,每个格子里有一个正整数 a,1 ≤ a ≤ k,k ≤ n∗m 假设你当前时刻站在 (i,j) 这个格子里,你想要移动到 (x,y),那必须满足以下三个条件 1:i < x 2:j < y 3:第 i 行第 j 列格子里的数不等于第 x 行第 y 列格子里的数 求从 (1,1) 移动到 (n,m) 的不同的方案数
对于 100% 的数据,n,m ≤ 750
容易想到f[i][j]=sigma(f[k][l]|a[k][l]!=a[i][j])
我们可以容易的统计和颜色无关的情况然后去掉颜色相同的就可以了。
于是我们对每一种颜色建立一颗权值线段树
动态开点
时间复杂度O(n^2logn)
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<set>
#include<map>
#include<vector>
#define re register
#define il inline
using namespace std;
const int N=,NN=;
const int mod=;
int n,m,a[N][N],k,root[NN],lch[NN],rch[NN],cnt=;
int f[N][N],s[N][N],w[NN];
il int read(){
re int hs=;re char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)){
hs=(hs<<)+(hs<<)+c-'';
c=getchar();
}
return hs;
}
il void add(re int &i,re int l,re int r,re int p,re int v){
if(i==) i=(++cnt);
w[i]=(w[i]+v)%mod;
if(l==r) return;
re int mid=(l+r)/;
if(p<=mid) add(lch[i],l,mid,p,v);
else add(rch[i],mid+,r,p,v);
}
il int sum(re int i,re int l,re int r,re int p,re int q){
if(!i) return ;
if(l==p&&r==q) return w[i];
re int mid=(l+r)/;
if(q<=mid) return sum(lch[i],l,mid,p,q);
if(mid<p) return sum(rch[i],mid+,r,p,q);
return (sum(lch[i],l,mid,p,mid)+sum(rch[i],mid+,r,mid+,q))%mod;
}
int main(){
freopen("hopscotch.in","r",stdin);
freopen("hopscotch.out","w",stdout);
n=read();m=read();k=read();
for(int i=;i<=n;i++){
for(int j=;j<=m;j++)
a[i][j]=read();
}
f[][]=;add(root[a[][]],,m,,f[][]);
for(int i=;i<=m;i++) s[][i]=;
for(int i=;i<=n;i++) s[i][]=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
f[i][j]=(s[i-][j-]-sum(root[a[i][j]],,m,,j-)+mod)%mod;
s[i][j]=(((s[i-][j]+s[i][j-])%mod+f[i][j])%mod-s[i-][j-]+mod)%mod;
add(root[a[i-][j]],,m,j,f[i-][j]);
}
}
cout<<f[n][m]%mod;
return ;
}
常州day1p3的更多相关文章
- [日常训练]常州集训day8
T1 Description 给定一个长度为$n$的正整数序列$a$.可以将序列分成若干段,定义第$i$段的权值$x_i$为这一段中所有数的最大值,特殊地,$x_0=0$.求$\sum_{i=1}^{ ...
- [日常训练]常州集训day7
T1 Description 给定一个序列,初始为空.依次将$1-n$插入序列,其中$i$插到当前第$a_i$个数的右边($a_i=0$表示插到序列最左边).求最终序列. Input 第一行一个整数$ ...
- [日常训练]常州集训day5
T1 Description 小$W$和小$M$一起玩拼图游戏啦~ 小$M$给小$M$一张$N$个点的图,有$M$条可选无向边,每条边有一个甜蜜值,小$W$要选$K$条边,使得任意两点间最多有一条路径 ...
- [日常训练]常州集训day3
T1 Description 有$K$个石子,石子只能放在$N$条水平线与$M$条竖直线构成的网格的交点上. 求用$K$个石子最多能找到多少四边平行于坐标轴的长方形,它的四个角上都恰好放着一枚石子. ...
- [日常训练]常州集训day2
T1 Description 给定$N$个点,问这$N$个点能构成的三角形个数. Input 第一行一个整数$N$,代表点数. 接下来$N$行,每行两个非负整数$X,Y$,表示一个点的坐标. Outp ...
- 常州Day4题解
1. 高精度 这题略水,字符串可过,还不加压位等,操作只有BitShift和add/sub,不过编程复杂度有些高.(输出都是二进制我能说些什么...) 2. N皇后问题 (警告! 不是平时你见到的N皇 ...
- 常州培训 day5 解题报告
第一题:(贪心) 题目大意:给出N*M的矩形,要用正方形将它铺满(正方形之间不能重叠),相邻的正方形颜色不能相同,颜色用ABCD表示.要求从上到下从左到右字典序最小. N,M<=100 解题过程 ...
- 常州培训 day7 解题报告
最后一天..有些感慨,这七天被虐的感动万分 第一题: 题目大意: 求出 n*i(i=1,2,3....n) mod p的逆元 n<p<=3000000 ,p是质数. 之前写过了,懒得再写 ...
- 常州培训 day6 解题报告
第一题: 题目大意: 给出一个N*N的矩阵,矩阵元素均为0或1.定义矩阵权值为sum(F[i][j]*F[j][i]); 给出K个操作: 询问矩阵的权值mod 2. 将矩阵的某一行元素取反(0变成1, ...
随机推荐
- unity游戏在ios11上不显示泰语解决办法
最近在开发中遇到unity游戏在ios11上不显示泰语的问题,全部显示为方框内一个问号. 通过搜索发现这是Unity的一个bug,在2017.3中修复了 但升级unity风险很大,所以我采用了该文中提 ...
- C# VS,连接到oracle 报要升级到8.多少版本的错
1:确定服务器的oracle版本 2:本地的客户端版本要和服务器一致 3:操作系统位数要一致
- css控制字体线使用:text-decoration
css控制字体下划线使用text-decoration : text-decoration:none 无装饰,通常对html下划线标签去掉下划线样式 text-decoration:underline ...
- Python数据可视化的10种技能
今天我来给你讲讲Python的可视化技术. 如果你想要用Python进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解.其中最直观的就是采用数据可视化技术,这样,数据 ...
- VLP16线用户手册.md
VLP16线用户手册 文档 传感器数据 分组类型和定义 传感器产生两种类型的数据包:数据包和位置数据包.位置包有时也被称为遥测包或GPS包. 数据包包括传感器测量到的三维数据以及返回光脉冲的表面的校 ...
- Python 装饰器Decorator(二)
对于上一篇“”Python闭包“”随笔中提到的make_averager()函数的如下实现,我们把历史值保存在列表里,每次计算平均值都需要重新求和,当历史值较多时,需要占用比较多的空间并且效率也不高. ...
- Scrum立会报告+燃尽图(十月二十三日总第十四次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...
- 基于NABCD评论作品,及改进建议
组名:杨老师粉丝群 组长:乔静玉 组员:吴奕瑶 刘佳瑞 公冶令鑫 杨磊 杨金铭 张宇 卢帝同 一.拉格朗日2018--<飞词> 1.1 NABCD分析 N(Need,需求) ...
- pandas中DataFrame的ix,loc,iloc索引方式的异同
pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在inde ...
- mvc4 找到多个与名为“xx”的控制器匹配的类型
asp.net mvc4 添加分区出现错误 找到多个与名为“home”的控制器匹配的类型 会出现如下错误”找到多个与名为“home”的控制器匹配的类型“ 在RouteConfig文件中添加命名空间可解 ...