传送门

首先这个题目显然就是先求出所有的 \(border\),问题转化成一个可行性背包的问题

一个方法就是同余类最短路,裸跑 \(30\) 分,加优化 \(50\) 分

首先有个性质

\(border\) 分成的等差数列的个数不超过 \(log\)

和回文树的性质的证明类似瞎画图一下就行了

我们注意到可以一个一个等差数列的更新最短路

要做到这个,必须能从之前的等差数列的模数 \(n\) 转移到当前等差数列的 \(x\)

假设模 \(n\) 的最短路为 \(f\),模 \(x\) 的为 \(g\)

只需要 \(f_i\) 更新 \(g_{f_i~mod~x}\) 之后 \(g\) 自己通过添加 \(n\) 更新即可

现在考虑 \(g\) 每次 \(+n\) 更新

注意到把每次 \(+n\) 的下标弄出来,一定是若干个环,环之间独立

显然每个的最小值不会再次更新,那么找到这个点就变成了链,然后一个个向后 \(+n\) 更新即可

再考虑每个等差数列的内部更新,模数我们选择首项 \(x\),这样才比较可做

设公差为 \(d\),长度为 \(len\)

同样的,把每次 \(+d\) 的下标弄出来,还是若干个独立的环

找到最小值的位置编号 \(0\) 对变成的链向后一一编号

那么对于第 \(i\) 个点,可以从 \(j\) 加上 \(x+d\times(i-j)\) 转移,这样的 \(j\) 必须满足 \(i-j<len\)

这个东西显然可以单调队列优化一波

然后就可能可以通过这一题了

关于被hack这件事情,卡卡常就好了

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; const int maxn(5e5 + 5); int test, n, nxt[maxn], len[maxn], cnt, vis[maxn], idx, id[maxn];
ll w, ans, f[maxn], g[maxn], inf, que[maxn];
char s[maxn];
queue <int> q; inline void Calc(int lst, int u, int d, int num) {
int i, j, k, mnp, hd, tl;
for (i = 0; i < lst; ++i) g[i] = f[i];
for (i = 0; i < u; ++i) f[i] = inf;
for (i = 0; i < lst; ++i) if (g[i] != inf) f[g[i] % u] = min(f[g[i] % u], g[i]);
++idx;
for (i = 0; i < u; ++i)
if (vis[i] != idx) {
mnp = i, vis[i] = idx;
for (j = (i + lst) % u; j ^ i; j = (j + lst) % u) {
if (f[j] < f[mnp]) mnp = j;
vis[j] = idx;
}
for (k = mnp, j = (mnp + lst) % u; j ^ mnp; k = j, j = (j + lst) % u)
f[j] = min(f[j], f[k] + lst);
}
++idx;
for (i = 0; i < u; ++i)
if (vis[i] != idx) {
mnp = i, vis[i] = idx, hd = 0, tl = -1;
for (j = (i + d) % u; j ^ i; j = (j + d) % u) {
if (f[j] < f[mnp]) mnp = j;
vis[j] = idx;
}
que[0] = f[mnp], id[++tl] = 0;
for (k = 1, j = (mnp + d) % u; j ^ mnp; j = (j + d) % u, ++k) {
while (hd <= tl && k - id[hd] >= num) ++hd;
if (hd <= tl) f[j] = min(f[j], que[hd] + u + (ll)(k - id[hd]) * d);
while (hd <= tl && que[tl] - (ll)id[tl] * d > f[j] - (ll)k * d) --tl;
que[++tl] = f[j], id[tl] = k;
}
}
} inline void Solve() {
int i, j, u, d, lst;
scanf("%d%lld", &n, &w), ans = 0;
scanf(" %s", s + 1);
for (i = 2, j = 0; i <= n; ++i) {
while (j && s[i] != s[j + 1]) j = nxt[j];
j += s[i] == s[j + 1], nxt[i] = j;
}
cnt = 0, j = n;
while (j) len[++cnt] = n - nxt[j], j = nxt[j];
sort(len + 1, len + cnt + 1), --cnt;
memset(f, 63, sizeof(f)), inf = f[0];
f[n % len[1]] = n, u = lst = n;
reverse(len + 1, len + cnt + 1);
for (i = 1; i < cnt; i = j) {
d = len[i] - len[i + 1], j = i + 1;
while (j <= cnt && len[j - 1] - len[j] == d) ++j;
u = len[j - 1], Calc(lst, u, d, j - i), lst = u;
}
if (cnt) u = len[cnt], Calc(lst, u, 0, 1);
for (i = 0; i < u; ++i) if (f[i] <= w) ans += (w - f[i]) / u + 1;
printf("%lld\n", ans);
} int main() {
scanf("%d", &test);
while (test) --test, Solve();
return 0;
}

UOJ#172. 【WC2016】论战捆竹竿的更多相关文章

  1. bzoj4406: [Wc2016]论战捆竹竿&&uoj#172. 【WC2016】论战捆竹竿

    第二次在bzoj跑进前十竟然是因为在UOJ卡常致死 首先这个题其实就是一个无限背包 一般做法是同余最短路,就是bzoj2118: 墨墨的等式可以拿到30分的好成绩 背包是个卷积就分治FFT优化那么下面 ...

  2. luogu P4156 [WC2016]论战捆竹竿

    传送门 官方题解(证明都在这) 神仙题鸭qwq 转化模型,发现这题本质就是一个集合,每次可以加上集合里的数,问可以拼出多少不同的数 首先暴力需要膜意义下的最短路,例题戳这 然后这个暴力可以优化成N^2 ...

  3. Luogu4156 WC2016 论战捆竹竿 KMP、同余类最短路、背包、单调队列

    传送门 豪华升级版同余类最短路-- 官方题解 主要写几个小trick: \(1.O(nm)\)实现同余类最短路: 设某一条边长度为\(x\),那么我们选择一个点,在同余类上不断跳\(x\),可以形成一 ...

  4. BZOJ4406 WC2016 论战捆竹竿

    Problem BZOJ Solution 显然是一个同余系最短路问题,转移方案就是所有|S|-border的长度,有 \(O(n)\) 种,暴力跑dijkstra的复杂度为 \(O(n^2\log ...

  5. 「WC2016」论战捆竹竿

    「WC2016」论战捆竹竿 前置知识 参考资料:<论战捆竹竿解题报告-王鉴浩>,<字符串算法选讲-金策>. Border&Period 若前缀 \(pre(s,x)​\ ...

  6. UOJ#172. 【WC2016】论战捆竹竿 字符串 KMP 动态规划 单调队列 背包

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ172.html 题解 首先,这个问题显然是个背包问题. 然后,可以证明:一个字符串的 border 长度可 ...

  7. 【WC2016】论战捆竹竿

    已经快三周了啊--终于把挖的坑填了-- 首先显然是把除了自身的所有border拿出来,即做 \(\left\{ n - b_1, n - b_2, \dots, n - b_k, n \right\} ...

  8. 【LuoguP4156】论战捆竹竿

    题目链接 题意简述 你有一个长度为 n 的字符串 , 将它复制任意次 , 复制出的串的前缀可以与之前的串的后缀重叠在一起 , 问最后总共可能的长度数目 , 长度不能超过 \(w\) 多组数据. \(n ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. 工具IDEA 配置springboot+maven项目

    工具IDEA 配置springboot+maven项目 首先安装IDEA,至于怎么安装就不介绍了.. 第一步 配置maven环境 首先安装maven,先在网上下载一个maven包.在IDEA的sett ...

  2. Java性能优化技巧及实战

    关于Java代码的性能优化,是每个javaer都渴望掌握的本领,进而晋升为大牛的必经之路,但是对java的调优需要了解整个java的运行机制及底层调用细节,需要多看多读多写多试,并非一朝一夕之功.本文 ...

  3. c++之随堂笔记

    1.指针篇 给指针赋值时,只能等号右边只能使用&符号将一个对象的地址赋值给指针,不能直接把一个具体的数或者字符串直接赋值给指针. 举例: int* ptr_num = 100;  //这种写法 ...

  4. C#-WebForm-LinQ(一)-LinQ:语言集成查询(Language Integrated Query)-增删改查、属性扩展

    LinQ-语言集成查询(Language Integrated Query) 高集成化的数据库访问技术 LINQ 2 SQL 实际是将数据库的表映射成程序中的类 会把数据库的表名原封不动的变成类名 数 ...

  5. Eclipse 的SVN 的分支

    分支 概念 在版本控制过程中,使用多个分支同时推进多个不同功能开发.   不使用分支开发:人与人之间协作   使用分支开发:小组和小组之间协作 作用  多个功能开发齐头并进同时进行 任何一个分支上功能 ...

  6. jQuery 事件注册

    重点事件注册.on() <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset= ...

  7. Django官网案例教程

    1.注意:python manage.py runserver 0:8000(侧任何IP均可访问)

  8. Jenkins 源代码编译

    最近一直想写一个关于 Jenkins 管理的 InelliJ 插件,但是尝试很多次总是在登录认证上面失败,各种办法都不起作用,而且官方的文档含糊不清,就动起了从源代码编译在开发环境中进行调试. 废话少 ...

  9. (转)Mysql主从复制搭建及详解

    http://www.cnblogs.com/kevingrace/p/6256603.html---------Mysql主从同步(1)-主从/主主环境部署梳理 原文:http://blog.csd ...

  10. io流之节点流inputstream、outputstream、reader、writer

    例子程序:读取工作空间下 package io; import java.io.*; public class TestFileInputStream { public static void mai ...