Gambler's Problem,即“赌徒问题”,是一个经典的动态编程里值迭代应用的问题。

在一个掷硬币游戏中,赌徒先下注,如果硬币为正面,赌徒赢回双倍,若是反面,则输掉赌注。赌徒给自己定了一个目标,本金赢到100块或是输光就结束游戏。找到一个关于本金与赌注之间关系的策略使得赌徒最快赢到100块。状态s = {1, 2, 3...., 99, 100},动作a = {1, 2, 3, ...., min(s, 100 - s)}。奖励设置:只有当赌徒赢到100块时奖励+1,其余状态奖励为0。

这个问题并不难,最优policy一定是min(s, 100-s),这里就不分析了,直接给出计算程序

clear
clc
%% Initialize
Q = zeros(101);
ActionProb = Q + 1/100;
V = zeros(1, 101);
R = V;
R(1, 101) = 1;
V = R;
hp = 0.4;
i = 0;
delta = 100;
gamma = 0.5;
capital = [1:99];
num = 1; %% Value Iteration
while(num < 10)
while(i < num)
delta = 0;
capital = [1:99];
for state = [1:99]
actions = [1:min(capital(state), 100 - capital(state))];
PossibleStateLose = capital(state) - actions + 1;
PossibleStateWin = capital(state) + actions + 1;
%Q(state + 1, actions) = gamma*(hp*V(PossibleStateWin) + (1 - hp)*V(PossibleStateLose)) + R(PossibleStateWin) + R(PossibleStateLose);
Q(state + 1, actions) = hp*V(PossibleStateWin) + (1 - hp)*V(PossibleStateLose);
[MAX index] = max(Q(state + 1, :));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Softmax Policy:
%ActionProb(state, :) = 0;
%ActionProb(state, :) = exp(Q(state, :)/0.02)/sum(exp(Q(state, :)/0.02));
%R(state + 1) = ActionProb(state, :)*Q(state, :)';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
V(state + 1) = MAX;
end
i = i + 1;
end
plot(V, 'LineWidth', 2)
hold on
num = num + 1;
grid on
end
%%
figure
for state = 1:100
[MAX index] = max(Q(state, :));
Map(state) = index;
plot(state, index, 'bo')
hold on
end %%Test Part
iter = 1;
count = zeros(1, 100);
flag = count;
Mflag = zeros(1, 100);
while(iter < 1000)
Mflag = zeros(1, 100);
Mcount = Mflag; for state = 1:100
capital = state;
while(1)
if(capital >= 100)
break
end
stake = Map(capital);
%stake = min(capital, 100 - capital);
if(rand < 0.4)
capital = capital + stake;
else
capital = capital - stake;
end
if(capital <= 0)
flag(state) = flag(state) + 1;
Mflag(state) = Mflag(state) + 1;
break
else
count(state) = count(state) + 1;
Mcount(state) = Mcount(state) + 1;
end
end
end
%figure
%plot(find(flag~=1), count(find(flag ~= 1)), 'bo')
FT(iter) = sum(Mflag)/100;
ST(iter) = mean(Mcount(find(Mflag ~= 1)));
iter = iter + 1;
end
figure
plot(1 - flag/1000, 'bo')
figure
plot(count/1000)
mean(1-FT)
mean(ST)

  

【RL系列】马尔可夫决策过程——Gambler's Problem的更多相关文章

  1. 【RL系列】马尔可夫决策过程——状态价值评价与动作价值评价

    请先阅读上两篇文章: [RL系列]马尔可夫决策过程中状态价值函数的一般形式 [RL系列]马尔可夫决策过程与动态编程 状态价值函数,顾名思义,就是用于状态价值评价(SVE)的.典型的问题有“格子世界(G ...

  2. 【RL系列】马尔可夫决策过程中状态价值函数的一般形式

    请先阅读上一篇文章:[RL系列]马尔可夫决策过程与动态编程 在上一篇文章里,主要讨论了马尔可夫决策过程模型的来源和基本思想,并以MAB问题为例简单的介绍了动态编程的基本方法.虽然上一篇文章中的马尔可夫 ...

  3. 【RL系列】马尔可夫决策过程——Jack‘s Car Rental

    本篇请结合课本Reinforcement Learning: An Introduction学习 Jack's Car Rental是一个经典的应用马尔可夫决策过程的问题,翻译过来,我们就直接叫它“租 ...

  4. [Reinforcement Learning] 马尔可夫决策过程

    在介绍马尔可夫决策过程之前,我们先介绍下情节性任务和连续性任务以及马尔可夫性. 情节性任务 vs. 连续任务 情节性任务(Episodic Tasks),所有的任务可以被可以分解成一系列情节,可以看作 ...

  5. 增强学习(二)----- 马尔可夫决策过程MDP

    1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...

  6. 【cs229-Lecture16】马尔可夫决策过程

    之前讲了监督学习和无监督学习,今天主要讲“强化学习”. 马尔科夫决策过程:Markov Decision Process(MDP) 价值函数:value function 值迭代:value iter ...

  7. 强化学习-MDP(马尔可夫决策过程)算法原理

    1. 前言 前面的强化学习基础知识介绍了强化学习中的一些基本元素和整体概念.今天讲解强化学习里面最最基础的MDP(马尔可夫决策过程). 2. MDP定义 MDP是当前强化学习理论推导的基石,通过这套框 ...

  8. David Silver强化学习Lecture2:马尔可夫决策过程

    课件:Lecture 2: Markov Decision Processes 视频:David Silver深度强化学习第2课 - 简介 (中文字幕) 马尔可夫过程 马尔可夫决策过程简介 马尔可夫决 ...

  9. 马尔可夫决策过程MDP

    1. 马尔可夫模型的几类子模型 马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是马尔可夫性(无 ...

随机推荐

  1. 基于oracle数据库存储过程的创建及调用

    1.PLSQL编程 1.1概念和目的 PL/SQL(Procedure Language/SQL) PLSQL是Oracle对sql语言的过程化扩展 指在SQL命令语言中增加了过程处理语句(如分支.循 ...

  2. React Native获取组件位置和大小

    RN页面中定位或滚动操作时,需要获取元素的大小和位置信息,有几种常用的方法 获取设备屏幕的宽高 import {Dimensions} from 'react-native'; var {height ...

  3. py基础---多线程、多进程、协程

    目录 Python基础__线程.进程.协程 1.什么是线程(thread)? 2.什么是进程(process)? 3.进程和线程的区别 4.GIL全局解释器锁 5.多线程(threading模块) 6 ...

  4. Xquery的初步学习(一次Lab作业的总结)

    Task 1: Open countries.xml, compose the following XQueries: 1. Return the area of Mongolia. 2. Retur ...

  5. 写 5 个你知道的 HTML5 标签,说明他们的意义

    1:<canvas>标签   定义图形.图像,是基于javascript的绘图API 2:<video>标签   定义视频 3:<audio>标签  定义音频内容 ...

  6. Python调用time模块设置当前时间-指定时间

    import datetimeimport time#新建元旦时间#将程序打包def A(): # 设定时间 newyear =datetime.datetime(2033,10,1) #调用当前时间 ...

  7. ECShop全系列版本远程代码执行漏洞复现

    前言 问题发生在user.php的display函数,模版变量可控,导致注入,配合注入可达到远程代码执行 漏洞分析 0x01-SQL注入 先看user.php $back_act变量来源于HTTP_R ...

  8. 从“顶点小说”下载完整小说——python爬虫

    此程序只是单纯的为了练习而做,首先这个顶点小说非收费型的那种小说网站(咳咳,我们应该支持正版,正版万岁,✌).经常在这个网站看小说,所以就光荣的选择了这个网站.此外,其实里面是自带下载功能的,而且支持 ...

  9. vue中-webkit-box-orient:vertical打包放到线上不显示

    解决方法: 1.找到build文件夹 下的webpack.prod.conf.js文件 2.注释new OptimizeCSSPlugin({                          css ...

  10. Go语言中结构体的使用-第1部分结构体

    1 概述 结构体是由成员构成的复合类型.Go 语言使用结构体和结构体成员来描述真实世界的实体和实体对应的各种属性.结构体成员,也可称之为成员变量,字段,属性.属性要满足唯一性.结构体的概念在软件工程上 ...