prufer序列计数的一些结论
\(prufer\)序列和完全图的生成树一一对应(考虑构造)
完全图的生成树个数为\(n^{n - 2}\)
满足第\(i\)个点的度数为\(d_i\)的生成树为\(\frac{n!}{\prod (d_i - 1) !}\)
把\(m\)个联通块,第\(i\)个大小为\(a_i\),连接起来的方案数为\(n^{m - 2} \prod a_i\)
\(n\)个点,指定\(k\)个点在不同的树中,形成\(k\)个森林的方案数为\(k * n^{n - k - 1}\)
prufer序列计数的一些结论的更多相关文章
- 5.13 省选模拟赛 优雅的绽放吧,墨染樱花 多项式 prufer序列 计数 dp
		
LINK:优雅的绽放吧,墨染樱花 当时考完只会50分的做法 最近做了某道题受到启发 故会做这道题目了.(末尾附30分 50分 100分code 看到度数容易想到prufer序列 考虑dp统计方案数. ...
 - [HNOI2004][bzoj1211] 树的计数(prufer序列)
		
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3432 Solved: 1295[Submit][Stat ...
 - 【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)
		
点此看题面 大致题意: 给定每个点的度数,让你求有多少种符合条件的无根树. \(prufer\)序列 这显然是一道利用\(prufer\)序列求解的裸题. 考虑到由\(prufer\)序列得到的结论: ...
 - 【洛谷2624】[HNOI2008] 明明的烦恼(Python+利用prufer序列结论求解)
		
点此看题面 大致题意: 给你某些点的度数,其余点度数任意,让你求有多少种符合条件的无根树. \(prufer\)序列 一道弱化版的题目:[洛谷2290][HNOI2004] 树的计数. 这同样也是一道 ...
 - 树的计数 Prufer序列+Cayley公式
		
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...
 - bzoj1211树的计数 x bzoj1005明明的烦恼 题解(Prufer序列)
		
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3432 Solved: 1295[Submit][Stat ...
 - 树的计数 + prufer序列与Cayley公式 学习笔记
		
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...
 - 【XSY1295】calc n个点n条边无向连通图计数 prufer序列
		
题目大意 求\(n\)个点\(n\)条边的无向连通图的个数 \(n\leq 5000\) 题解 显然是一个环上有很多外向树. 首先有一个东西:\(n\)个点选\(k\)个点作为树的根的生成森林个数为: ...
 - 无根树的计数——prufer序列
		
参考博客https://www.cnblogs.com/dirge/p/5503289.html (1)prufer数列是一种无根树的编码表示,类似于hash. 一棵n个节点带编号的无根树,对应唯一串 ...
 
随机推荐
- 【Linux】Linux下统计当前文件夹下的文件个数、目录个数
			
统计当前文件夹下文件的个数,包括子文件夹里的 ls -lR|grep "^-"|wc -l 统计文件夹下目录的个数,包括子文件夹里的 ls -lR|grep "^d&qu ...
 - camera驱动框架分析(上)【转】
			
转自:https://www.cnblogs.com/rongpmcu/p/7662738.html 前言 camera驱动框架涉及到的知识点比较多,特别是camera本身的接口就有很多,有些是直接连 ...
 - Linux内存管理--物理内存分配【转】
			
转自:http://blog.csdn.net/myarrow/article/details/8682819 1. First Fit分配器 First Fit分配器是最基本的内存分配器,它使用bi ...
 - java并发编程系列二:原子操作/CAS
			
什么是原子操作 不可被中断的一个或者一系列操作 实现原子操作的方式 Java可以通过锁和循环CAS的方式实现原子操作 CAS( Compare And Swap ) 为什么要有CAS? Compar ...
 - oracle分区分表
			
(1) 表空间及分区表的概念表空间: 是一个或多个数据文件的集合,所有的数据对象都存放在指定的表空间中,但主要存放的是表, 所以称作表空间.分区表: 当表中的数据量不断增大,查询数据的速 ...
 - 利用autocomplete.js实现仿百度搜索效果(ajax动态获取后端[C#]数据)
			
实现功能描述: 1.实现搜索框的智能提示 2.第二次浏览器缓存结果 3.实现仿百度搜索 <!DOCTYPE html> <html xmlns="http://www.w3 ...
 - 001_TCP/IP TIME_WAIT状态原理及监控实战
			
一.原理 <1>TIME_WAIT状态原理---------------------------- 通信双方建立TCP连接后,主动关闭连接的一方就会进入TIME_WAIT状态. 客户端主动 ...
 - XPATH语法(二)
			
节点(node) 在 XPath 中,有七种类型的节点:元素.属性.文本.命名空间.处理指令.注释以及文档(根)节点.XML 文档是被作为节点树来对待的.树的根被称为文档节点或者根节点. 以下面这xm ...
 - 11:django 模板 内建标签
			
django 内建标签 autoescape 控制当前自动转义的行为,有on和off两个选项 {% autoescape on %} {{ body }} {% endautoescape %} bl ...
 - ZOJ 3229 Shoot the Bullet(有源汇上下界最大流)
			
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3442 题目大意: 一个屌丝给m个女神拍照,计划拍照n天,每一天屌丝给 ...