prufer序列计数的一些结论
\(prufer\)序列和完全图的生成树一一对应(考虑构造)
完全图的生成树个数为\(n^{n - 2}\)
满足第\(i\)个点的度数为\(d_i\)的生成树为\(\frac{n!}{\prod (d_i - 1) !}\)
把\(m\)个联通块,第\(i\)个大小为\(a_i\),连接起来的方案数为\(n^{m - 2} \prod a_i\)
\(n\)个点,指定\(k\)个点在不同的树中,形成\(k\)个森林的方案数为\(k * n^{n - k - 1}\)
prufer序列计数的一些结论的更多相关文章
- 5.13 省选模拟赛 优雅的绽放吧,墨染樱花 多项式 prufer序列 计数 dp
LINK:优雅的绽放吧,墨染樱花 当时考完只会50分的做法 最近做了某道题受到启发 故会做这道题目了.(末尾附30分 50分 100分code 看到度数容易想到prufer序列 考虑dp统计方案数. ...
- [HNOI2004][bzoj1211] 树的计数(prufer序列)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3432 Solved: 1295[Submit][Stat ...
- 【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)
点此看题面 大致题意: 给定每个点的度数,让你求有多少种符合条件的无根树. \(prufer\)序列 这显然是一道利用\(prufer\)序列求解的裸题. 考虑到由\(prufer\)序列得到的结论: ...
- 【洛谷2624】[HNOI2008] 明明的烦恼(Python+利用prufer序列结论求解)
点此看题面 大致题意: 给你某些点的度数,其余点度数任意,让你求有多少种符合条件的无根树. \(prufer\)序列 一道弱化版的题目:[洛谷2290][HNOI2004] 树的计数. 这同样也是一道 ...
- 树的计数 Prufer序列+Cayley公式
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...
- bzoj1211树的计数 x bzoj1005明明的烦恼 题解(Prufer序列)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3432 Solved: 1295[Submit][Stat ...
- 树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...
- 【XSY1295】calc n个点n条边无向连通图计数 prufer序列
题目大意 求\(n\)个点\(n\)条边的无向连通图的个数 \(n\leq 5000\) 题解 显然是一个环上有很多外向树. 首先有一个东西:\(n\)个点选\(k\)个点作为树的根的生成森林个数为: ...
- 无根树的计数——prufer序列
参考博客https://www.cnblogs.com/dirge/p/5503289.html (1)prufer数列是一种无根树的编码表示,类似于hash. 一棵n个节点带编号的无根树,对应唯一串 ...
随机推荐
- Python Tools for Machine Learning
Python Tools for Machine Learning Python is one of the best programming languages out there, with an ...
- C语言函数调用栈(一)
程序的执行过程可看作连续的函数调用.当一个函数执行完毕时,程序要回到调用指令的下一条指令(紧接call指令)处继续执行.函数调用过程通常使用堆栈实现,每个用户态进程对应一个调用栈结构(call sta ...
- ubuntu 下 teamview 取消自动启动 autostart
sudo teamviewer daemon disable
- 【转】void及void指针的深刻解析
void的含义 void即“无类型” ,void*则为“无类型指针”,可以指向任何数据类型,所以又叫做“通用指针”. void指针使用规范 ①void指针可以只想任意类型的数据,亦即可用任意数据类型的 ...
- VS "以下文件中的行尾不一致,要将行尾标准化吗?"
原文地址:http://www.cnblogs.com/yymn/p/6852857.html 这是由Windows和Unix不同的标准引起的...即“回车”和“换行”的问题... “回车”和“换行” ...
- centos6下的lvm逻辑卷的管理
LVM:Logical Volume Manager 将多块设备组合成一个来使用 dm:device mapper 设备映射 设备文件 /dev/卷组名/逻辑卷名 /dev/mapp ...
- jquery学习集合
跳转网页:$(location).attr('href', '/index');
- CentOS切换为iptables防火墙并进行相关配置
CentOS切换为iptables防火墙 切换到iptables首先应该关掉默认的firewalld,然后安装iptables服务. 1.关闭firewall: service firewalld s ...
- 【转】js中的事件委托或是事件代理详解
起因: 1.这是前端面试的经典题型,要去找工作的小伙伴看看还是有帮助的: 2.其实我一直都没弄明白,写这个一是为了备忘,二是给其他的知其然不知其所以然的小伙伴们以参考: 概述: 那什么叫事件委托呢?它 ...
- OI中坑点总结
以下是我个人OI生涯中遇到的坑点的一个小总结,可能是我太菜了,总是掉坑里,请大佬勿喷 1,多重背包的转移的循环顺序 //默认每个物品体积为一(不想打码……) //dp[i]表示占用背包容量i所能获得的 ...