1. \(prufer\)序列和完全图的生成树一一对应(考虑构造)

  2. 完全图的生成树个数为\(n^{n - 2}\)

  3. 满足第\(i\)个点的度数为\(d_i\)的生成树为\(\frac{n!}{\prod (d_i - 1) !}\)

  4. 把\(m\)个联通块,第\(i\)个大小为\(a_i\),连接起来的方案数为\(n^{m - 2} \prod a_i\)

  5. \(n\)个点,指定\(k\)个点在不同的树中,形成\(k\)个森林的方案数为\(k * n^{n - k - 1}\)

prufer序列计数的一些结论的更多相关文章

  1. 5.13 省选模拟赛 优雅的绽放吧,墨染樱花 多项式 prufer序列 计数 dp

    LINK:优雅的绽放吧,墨染樱花 当时考完只会50分的做法 最近做了某道题受到启发 故会做这道题目了.(末尾附30分 50分 100分code 看到度数容易想到prufer序列 考虑dp统计方案数. ...

  2. [HNOI2004][bzoj1211] 树的计数(prufer序列)

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3432  Solved: 1295[Submit][Stat ...

  3. 【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)

    点此看题面 大致题意: 给定每个点的度数,让你求有多少种符合条件的无根树. \(prufer\)序列 这显然是一道利用\(prufer\)序列求解的裸题. 考虑到由\(prufer\)序列得到的结论: ...

  4. 【洛谷2624】[HNOI2008] 明明的烦恼(Python+利用prufer序列结论求解)

    点此看题面 大致题意: 给你某些点的度数,其余点度数任意,让你求有多少种符合条件的无根树. \(prufer\)序列 一道弱化版的题目:[洛谷2290][HNOI2004] 树的计数. 这同样也是一道 ...

  5. 树的计数 Prufer序列+Cayley公式

    先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...

  6. bzoj1211树的计数 x bzoj1005明明的烦恼 题解(Prufer序列)

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3432  Solved: 1295[Submit][Stat ...

  7. 树的计数 + prufer序列与Cayley公式 学习笔记

    首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...

  8. 【XSY1295】calc n个点n条边无向连通图计数 prufer序列

    题目大意 求\(n\)个点\(n\)条边的无向连通图的个数 \(n\leq 5000\) 题解 显然是一个环上有很多外向树. 首先有一个东西:\(n\)个点选\(k\)个点作为树的根的生成森林个数为: ...

  9. 无根树的计数——prufer序列

    参考博客https://www.cnblogs.com/dirge/p/5503289.html (1)prufer数列是一种无根树的编码表示,类似于hash. 一棵n个节点带编号的无根树,对应唯一串 ...

随机推荐

  1. Python Tools for Machine Learning

    Python Tools for Machine Learning Python is one of the best programming languages out there, with an ...

  2. C语言函数调用栈(一)

    程序的执行过程可看作连续的函数调用.当一个函数执行完毕时,程序要回到调用指令的下一条指令(紧接call指令)处继续执行.函数调用过程通常使用堆栈实现,每个用户态进程对应一个调用栈结构(call sta ...

  3. ubuntu 下 teamview 取消自动启动 autostart

    sudo teamviewer daemon disable

  4. 【转】void及void指针的深刻解析

    void的含义 void即“无类型” ,void*则为“无类型指针”,可以指向任何数据类型,所以又叫做“通用指针”. void指针使用规范 ①void指针可以只想任意类型的数据,亦即可用任意数据类型的 ...

  5. VS "以下文件中的行尾不一致,要将行尾标准化吗?"

    原文地址:http://www.cnblogs.com/yymn/p/6852857.html 这是由Windows和Unix不同的标准引起的...即“回车”和“换行”的问题... “回车”和“换行” ...

  6. centos6下的lvm逻辑卷的管理

    LVM:Logical Volume Manager 将多块设备组合成一个来使用 dm:device mapper 设备映射 设备文件 /dev/卷组名/逻辑卷名          /dev/mapp ...

  7. jquery学习集合

    跳转网页:$(location).attr('href', '/index');

  8. CentOS切换为iptables防火墙并进行相关配置

    CentOS切换为iptables防火墙 切换到iptables首先应该关掉默认的firewalld,然后安装iptables服务. 1.关闭firewall: service firewalld s ...

  9. 【转】js中的事件委托或是事件代理详解

    起因: 1.这是前端面试的经典题型,要去找工作的小伙伴看看还是有帮助的: 2.其实我一直都没弄明白,写这个一是为了备忘,二是给其他的知其然不知其所以然的小伙伴们以参考: 概述: 那什么叫事件委托呢?它 ...

  10. OI中坑点总结

    以下是我个人OI生涯中遇到的坑点的一个小总结,可能是我太菜了,总是掉坑里,请大佬勿喷 1,多重背包的转移的循环顺序 //默认每个物品体积为一(不想打码……) //dp[i]表示占用背包容量i所能获得的 ...