Description
给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案

题解:

  • dp[i]表示组合成包含i个贝壳的项链的总方案数
  • 转移:dp[i]=Σdp[i-j]*a[j](1<=j<=i)
  • #include <bits/stdc++.h>
    using namespace std;
    #define dob complex<double>
    #define rint register int
    #define mo 313
    #define IL inline
    const double pi=acos(-1.0);
    const int N=2e5;
    dob a[N],b[N],bb[N];
    int n,m,r[N],l,dp[N],sum[N];
    IL void fft(dob *a,int o)
    {
    for (rint i=;i<n;i++)
    if (i>r[i]) swap(a[i],a[r[i]]);
    for (rint i=;i<n;i*=)
    {
    dob wn(cos(pi/i),sin(pi*o/i)),x,y;
    for (rint j=;j<n;j+=(i*))
    {
    dob w(,);
    for (rint k=;k<i;k++,w*=wn)
    {
    x=a[j+k],y=w*a[i+j+k];
    a[j+k]=x+y,a[i+j+k]=x-y;
    }
    }
    }
    }
    IL void query()
    {
    l=;
    for (n=;n<=m;n<<=) l++;
    for (rint i=;i<n;i++) r[i]=(r[i/]/)|((i&)<<(l-));
    fft(a,); fft(b,);
    for (rint i=;i<n;i++) a[i]*=b[i];
    fft(a,-);
    for (rint i=;i<=m;i++)
    sum[i]=a[i].real()/n+0.5,sum[i]%=mo;
    }
    #define mid (l+r)/2
    void cdq(int l,int r)
    {
    if (l==r) return;
    cdq(l,mid);
    for (rint i=l;i<=mid;i++) a[i-l]=dp[i];
    m=r-l;
    rint x;
    for (x=;x<=m;x<<=);
    for (rint i=mid+;i<=l+x;i++) a[i-l]=;
    b[]=;
    for (rint i=;i<=x;i++) b[i]=bb[i];
    query();
    for (rint i=mid-l+;i<=r-l;i++)
    {
    dp[i+l]+=sum[i];
    dp[i+l]%=mo;
    }
    cdq(mid+,r);
    }
    int main()
    {
    freopen("noi.in","r",stdin);
    freopen("noi.out","w",stdout);
    std::ios::sync_with_stdio(false);
    int k;
    while (cin>>k&&k)
    {
    for (rint i=;i<=k;i++) cin>>bb[i];
    memset(dp,,sizeof(dp));
    dp[]=;
    cdq(,k);
    cout<<dp[k]%mo<<endl;
    }
    return ;
    }

该改一个fft模板了,实在是慢https://www.luogu.org/record/show?rid=3767323

#8 //HDU 5730 Shell Necklace(CDQ分治+FFT)的更多相关文章

  1. HDU 5730 Shell Necklace cdq分治+FFT

    题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对 ...

  2. HDU Shell Necklace CDQ分治+FFT

    Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in ...

  3. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  4. HDU 5730 Shell Necklace(CDQ分治+FFT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3 ...

  5. hdu 5730 Shell Necklace fft+cdq分治

    题目链接 dp[n] = sigma(a[i]*dp[n-i]), 给出a1.....an, 求dp[n]. n为1e5. 这个式子的形式显然是一个卷积, 所以可以用fft来优化一下, 但是这样也是会 ...

  6. HDU.5730.Shell Necklace(分治FFT)

    题目链接 \(Description\) 有\(n\)个长度分别为\(1,2,\ldots,n\)的珠子串,每个有\(a_i\)种,每种个数不限.求有多少种方法组成长度为\(n\)的串.答案对\(31 ...

  7. hdu 5730 Shell Necklace——多项式求逆+拆系数FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数 ...

  8. hdu5730 Shell Necklace 【分治fft】

    题目 简述: 有一段长度为n的贝壳,将其划分为若干段,给出划分为每种长度的方案数,问有多少种划分方案 题解 设\(f[i]\)表示长度为\(i\)时的方案数 不难得dp方程: \[f[i] = \su ...

  9. hdu 5730 Shell Necklace —— 分治FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 DP式:\( f[i] = \sum\limits_{j=1}^{i} f[i-j] * a[j] ...

随机推荐

  1. Maven 手动添加第三方依赖包及编译打包和java命令行编译JAVA文件并使用jar命令打包

    一,实例:新建了一个Maven项目,在eclipse中通过 build path –> configure path-.将依赖包添加到工程中后,eclipse不报错了.但是用Maven命令 mv ...

  2. C# 面向对象的base的使用

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Cons ...

  3. W3C规范

    连接:https://www.w3cschool.cn/xuexiw3c/xuexiw3c-standards.html W3C 代码标准规范 由 路飞 创建, 最后一次修改 2017-01-03 W ...

  4. JS 中对变量类型判断的几种方式

    文章整理搬运,出处不详,如有侵犯,请联系~   数据类型判断和数据类型转换代码工具 在 JS 中,有 5 种基本数据类型和 1 种复杂数据类型,基本数据类型有:Undefined, Null, Boo ...

  5. http raw post 之理解

    参考链接: https://imququ.com/post/four-ways-to-post-data-in-http.html http://blog.csdn.net/leyangjun/art ...

  6. mysql 语句 GROUP_CONCAT

    select * from blog_log;+----+---------------------+-------+--------+| id | time | level | info |+--- ...

  7. swift学习第一天---常量变量基础数据类型

    import Foundation /** * 1.常量 变量 知识要点:常量的定义用let 变量的定义用var 常量一旦定义便不可再更改. 变量定义之后可以在定义之后的程序中任意地方进行修改. */ ...

  8. 轻松读懂MSIL

    原文:http://www.cnblogs.com/brookshi/p/5225801.html

  9. 深入理解【缺页中断】及FIFO、LRU、OPT这三种置换算法

    缺页中断(英语:Page fault,又名硬错误.硬中断.分页错误.寻页缺失.缺页中断.页故障等)指的是当软件试图访问已映射在虚拟地址空间中,但是目前并未被加载在物理内存中的一个分页时,由中央处理器的 ...

  10. Vue源码

    参考文章:http://hcysun.me/2017/03/03/Vue%E6%BA%90%E7%A0%81%E5%AD%A6%E4%B9%A0/?utm_source=qq&utm_medi ...