Sightseeing trip
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions:8588   Accepted:3224   Special Judge

Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output

There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20

Sample Output

1 3 5 2

Source

题意:

有n个点,m条带权无向边。希望找到一条路径最短的环,环上至少包含三个点,输出长度和路径。

思路:

第一次写这种最小环问题。其实本质就是要枚举节点,再枚举路径上和他直接相邻的两个节点。

在floyd算法的步骤里,外层循环k刚开始时,$d[i,j]$保存的是从$i$经过$1~k-1$中的某个节点到$j$的最短路长度。

那么$d[i,j] + g[j,k] + g[k,i]$就是一个从$i$经过$j$直接到$k$再直接回到$i$的一个环的路径,这个的最小值就是他对应的路径的最小环。

枚举每一个$k$,找到上面式子的最小值,就是整个图的最小环。

输出路径的话其实就是相当于一个dfs

注意点:

有重边,所以存的是边的最小值。

$d[i,j] + g[j,k] + g[k,i]$可能会在运算时超出int,因为可能有的两两节点之间没有边存在也就是inf

虐狗宝典阅读笔记:

对于有向图的最小环问题,可枚举起点$s = 1~n$,执行堆优化的Dijkstra算法求解单源最短路经。$s$一定是第一个被从堆中取出的节点,我们扫描$s$的所有出边,当扩展、更新完成后,令$d[s] = inf$,然后继续求解。当$s$第二次被从堆中取出时,$d[s]就是经过点$s$的最小环长度。

 #include<iostream>
//#include<bits/stdc++.h>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<set>
#include<climits>
using namespace std;
typedef long long LL;
#define N 100010
#define pi 3.1415926535
#define inf 0x3f3f3f3f int n, m;
const int maxn = ;
int g[maxn][maxn], d[maxn][maxn], pos[maxn][maxn], ans;
vector<int>path; void get_path(int i, int j)
{
if(pos[i][j] == )return;
get_path(i, pos[i][j]);
path.push_back(pos[i][j]);
get_path(pos[i][j], j);
} void floyd()
{
ans = inf;
memcpy(d, g, sizeof(g));
for(int k = ; k <= n; k++){
for(int i = ; i < k; i++){
for(int j = i + ; j < k; j++){
if(ans > (long long)d[i][j] + g[j][k] + g[k][i]){
ans = d[i][j] + g[j][k] + g[k][i];
path.clear();
path.push_back(i);
get_path(i, j);
path.push_back(j);
path.push_back(k);
}
}
}
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
if(d[i][j] > d[i][k] + d[k][j]){
d[i][j] = d[i][k] + d[k][j];
pos[i][j] = k;
}
}
}
}
} int main()
{
while(scanf("%d%d", &n, &m) != EOF){
memset(g, 0x3f, sizeof(g));
memset(pos, , sizeof(pos));
for(int i = ; i <= n; i++){
g[i][i] = ;
}
for(int i = ; i < m; i++){
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
g[u][v] = g[v][u] = min(g[u][v], w);
} floyd();
if(ans == inf){
printf("No solution.\n");
}
else{
for(int i = ; i < path.size(); i++){
printf("%d", path[i]);
if(i == path.size() - ){
printf("\n");
}
else{
printf(" ");
}
}
}
}
return ;
}

poj1734 Sightseeing trip【最小环】的更多相关文章

  1. poj1734 Sightseeing trip[最小环]

    一个最小环裸题.最小环的两种求法dijkstra和Floyd直接参见这里我就是从这里学的,不想写了. 注意这里最重要的一个点是利用了Floyd的dp过程中路径上点不超过$k$这一性质,来枚举环上最大编 ...

  2. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  3. poj1734 Sightseeing trip(Floyd求无向图最小环)

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  4. POJ1734 - Sightseeing trip

    DescriptionThere is a travel agency in Adelton town on Zanzibar island. It has decided to offer its ...

  5. 「POJ1734」Sightseeing trip

    「POJ1734」Sightseeing trip 传送门 这题就是要我们求一个最小环并且按顺序输出一组解. 考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环: 考虑 \( ...

  6. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  7. 【poj1734】Sightseeing trip

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8520   Accepted: 3200 ...

  8. URAL 1004 Sightseeing Trip(最小环)

    Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...

  9. poj 1734 Sightseeing trip判断最短长度的环

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5590   Accepted: 2151 ...

随机推荐

  1. Spark GraphX实例(3)

    7. 图的聚合操作 图的聚合操作主要的方法有: (1) Graph.mapReduceTriplets():该方法有一个mapFunc和一个reduceFunc,mapFunc对图中的每一个EdgeT ...

  2. BaseDAO使用

    BaseDao接口的过人之处在于:一般是提供从数据库 增加.删除.修改记录.查询所有记录.查询符合某个条件记录.取得某条记录等方法的底层数据操作自定义类.由于我们可能操作多个数据库表,这样就需要为每个 ...

  3. 访问 Google

    对于一个技术人员访问Google是何其的重要呀? 一下收集了一些访问的连接,不愿意使用VPS的同学可以使用下: 非原版: Glgoo:http://www.glgoo.com/九尾搜索:http:// ...

  4. SQL 中的多条件查询

    在应用程序开发中,多条件查询是个经常遇到的情况,最简单最麻烦的方法是把所有的可能情况都考虑到,但是无疑是繁琐的,而且很容易漏掉可能的情形,下面是SQL语句实现多条件查询的情况 select * fro ...

  5. 多网卡环境下Eureka服务注册IP选择问题

    一.问题场景 服务器上分别配置了eth0, eth1和eth2三块网卡,只有eth1的地址可供其它机器访问,eth0和eth2的 IP 无效.在这种情况下,服务注册时Eureka Client会自动选 ...

  6. golang channel select

    尝试多个channel同时触发时,select的表现: package main import ( "fmt" "time" ) func loop(ch ch ...

  7. c#中的 virtual override 和abstract 以及sealed

    1.如果父类方法没有加virtual关键字,即不是一个虚方法,则在子类中只能隐藏基类方法,而不能覆盖. 2.如果父类方法加了virtual关键字,即它是一个虚方法,在子类中一样可以隐藏. 3.如果子类 ...

  8. 设置全局git忽略文件 gitconfig

    cat ~/.gitconfig [user] email = yuanhuikai@liquidnetwork.com name = yuanhuikai[core] excludesfile = ...

  9. 带cookie跨域问题的思路以及echo的解决方案

    问题起因 前后端分离,前端要访问后端资源,而且需要携带cookie信息,这时碰到了跨域问题.一开始以为设置为允许跨域allow_origins为即可.可是浏览器还是拦截的请求,于是查看跨域规则,原来跨 ...

  10. Vue:event对象

    一.什么是event对象 event对象:代表的是事件的状态.比如获取当前的元素:e.Target. 二.事件冒泡 什么是事件冒泡呢?百度百科的解释如下: 当事件发生后,这个事件就要开始传播(从里到外 ...