Sightseeing trip
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions:8588   Accepted:3224   Special Judge

Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output

There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20

Sample Output

1 3 5 2

Source

题意:

有n个点,m条带权无向边。希望找到一条路径最短的环,环上至少包含三个点,输出长度和路径。

思路:

第一次写这种最小环问题。其实本质就是要枚举节点,再枚举路径上和他直接相邻的两个节点。

在floyd算法的步骤里,外层循环k刚开始时,$d[i,j]$保存的是从$i$经过$1~k-1$中的某个节点到$j$的最短路长度。

那么$d[i,j] + g[j,k] + g[k,i]$就是一个从$i$经过$j$直接到$k$再直接回到$i$的一个环的路径,这个的最小值就是他对应的路径的最小环。

枚举每一个$k$,找到上面式子的最小值,就是整个图的最小环。

输出路径的话其实就是相当于一个dfs

注意点:

有重边,所以存的是边的最小值。

$d[i,j] + g[j,k] + g[k,i]$可能会在运算时超出int,因为可能有的两两节点之间没有边存在也就是inf

虐狗宝典阅读笔记:

对于有向图的最小环问题,可枚举起点$s = 1~n$,执行堆优化的Dijkstra算法求解单源最短路经。$s$一定是第一个被从堆中取出的节点,我们扫描$s$的所有出边,当扩展、更新完成后,令$d[s] = inf$,然后继续求解。当$s$第二次被从堆中取出时,$d[s]就是经过点$s$的最小环长度。

 #include<iostream>
//#include<bits/stdc++.h>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<set>
#include<climits>
using namespace std;
typedef long long LL;
#define N 100010
#define pi 3.1415926535
#define inf 0x3f3f3f3f int n, m;
const int maxn = ;
int g[maxn][maxn], d[maxn][maxn], pos[maxn][maxn], ans;
vector<int>path; void get_path(int i, int j)
{
if(pos[i][j] == )return;
get_path(i, pos[i][j]);
path.push_back(pos[i][j]);
get_path(pos[i][j], j);
} void floyd()
{
ans = inf;
memcpy(d, g, sizeof(g));
for(int k = ; k <= n; k++){
for(int i = ; i < k; i++){
for(int j = i + ; j < k; j++){
if(ans > (long long)d[i][j] + g[j][k] + g[k][i]){
ans = d[i][j] + g[j][k] + g[k][i];
path.clear();
path.push_back(i);
get_path(i, j);
path.push_back(j);
path.push_back(k);
}
}
}
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
if(d[i][j] > d[i][k] + d[k][j]){
d[i][j] = d[i][k] + d[k][j];
pos[i][j] = k;
}
}
}
}
} int main()
{
while(scanf("%d%d", &n, &m) != EOF){
memset(g, 0x3f, sizeof(g));
memset(pos, , sizeof(pos));
for(int i = ; i <= n; i++){
g[i][i] = ;
}
for(int i = ; i < m; i++){
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
g[u][v] = g[v][u] = min(g[u][v], w);
} floyd();
if(ans == inf){
printf("No solution.\n");
}
else{
for(int i = ; i < path.size(); i++){
printf("%d", path[i]);
if(i == path.size() - ){
printf("\n");
}
else{
printf(" ");
}
}
}
}
return ;
}

poj1734 Sightseeing trip【最小环】的更多相关文章

  1. poj1734 Sightseeing trip[最小环]

    一个最小环裸题.最小环的两种求法dijkstra和Floyd直接参见这里我就是从这里学的,不想写了. 注意这里最重要的一个点是利用了Floyd的dp过程中路径上点不超过$k$这一性质,来枚举环上最大编 ...

  2. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  3. poj1734 Sightseeing trip(Floyd求无向图最小环)

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  4. POJ1734 - Sightseeing trip

    DescriptionThere is a travel agency in Adelton town on Zanzibar island. It has decided to offer its ...

  5. 「POJ1734」Sightseeing trip

    「POJ1734」Sightseeing trip 传送门 这题就是要我们求一个最小环并且按顺序输出一组解. 考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环: 考虑 \( ...

  6. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  7. 【poj1734】Sightseeing trip

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8520   Accepted: 3200 ...

  8. URAL 1004 Sightseeing Trip(最小环)

    Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...

  9. poj 1734 Sightseeing trip判断最短长度的环

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5590   Accepted: 2151 ...

随机推荐

  1. QT程序打包发布

    本来感觉这是一个简单的操作,今天看见群里有人在问这个问题,他说网上查了很多都不成功,突然就想把自己初学的时候记录一下! 题目谢了QT程序的打包发布,那就是两步骤:打包+发布! 注释:这篇博文用的是Qt ...

  2. mysql存储引擎的一点学习心得总结

    首先我们应该了解mysql中的一个重要特性--插件式存储引擎,从名字就能够看出在mysql中,用户能够依据自己的需求随意的选择存储引擎.实际上也是这样.即使在同一个数据库中.不同的表也能够使用不同的存 ...

  3. Java实现 SSL双向认证

    我们常见的SSL验证较多的只是验证我们的服务器是否是真实正确的,当然如果你访问的URL压根就错了,那谁也没有办法.这个就是所谓的SSL单向认证. 但是实际中,我们有可能还会验证客户端是否符合要求,也就 ...

  4. 基于CentOS 搭建 Seafile 专属网盘

    系统要求:CentOS 7.2 64 位操作系统 安装 Seafile 安装依赖环境 使用 yum 安装 Python 及 MySQL: yum install python python-setup ...

  5. 基于Centos体验自然语言处理 by Python SDK

    系统要求: CentOS 7.2 64 位操作系统 准备工作 获取 SecretId 和 SecretKey 前往 密钥管理 页面获取你的 SecretId 和 SecretKey 信息,这些信息将会 ...

  6. aaronyang的百度地图API之LBS云与.NET开发 Javascript API 2.0【把数据存到LBS云2/2】

    中国的IT 需要无私分享和贡献的人,一起努力 本篇博客来自地址:http://www.cnblogs.com/AaronYang/p/3672898.html,请支持原创,未经允许不许转载 1.新建一 ...

  7. C#:注册组件 (cmd)

    public class ComRegistor { public static string classID = "CLSID\\{479A1AAC-C148-40BB-9868-A977 ...

  8. Spring与线程安全

    Spring作为一个IOC/DI容器,帮助我们管理了许许多多的“bean”.但其实,Spring并没有保证这些对象的线程安全,需要由开发者自己编写解决线程安全问题的代码. Spring对每个bean提 ...

  9. KMP算法——从入门到懵逼到了解

    本博文參考http://blog.csdn.net/v_july_v/article/details/7041827 关于其它字符串匹配算法见http://blog.csdn.net/WINCOL/a ...

  10. 批处理命令学习笔记——Start命令

    Start 命令 启动另一个窗口运行指定的程序或命令,所有的DOS命令和命令行程序都可以由start命令来调用. 语法:START ["title"] [/Dpath] [/I] ...