【CF582E】Boolean Function 树形DP+FWT
【CF582E】Boolean Function
题意:给你一个长度为n的表达式,其中未知数有A,B,C,D和?,运算有&和|和?(表达式中用括号确定了唯一的运算顺序)。?代表A,B,C,D或&,|。A,B,C,D的值是0或1。再给你m个条件$a,b,c,d,e$,代表A,B,C,D分别等于a,b,c,d时表达式的值为e。求有多少种将?填满的方式,符合给出的所有条件?
$n\le 500,m\le 2^4$
题解:CF总考这种用二进制表示特殊状态的题,感觉十分考验人类的抽象能力。
因为变量的可能情况的只有$2^4$种,所以我们用一个4位的二进制字符表示。这样一来我们就可以发现可能的表达式只有$2^{2^4}$种,所以我们再用一个16位的二进制来表示一个表达式(不要晕)。这个二进制数的第i位为0/1的意义是:如果把i用二进制表示,则i的每一位代表每个变量的取值。在这些变量分别取这些值时,这个表达式的值为0/1(千万不要晕)。
因为表达式是一堆括号围出来的,我们可以将括号的嵌套看成一个树形结构,并且是一棵二叉树。我们设f[x][S]表示对于当前节点对应的子树,有多少种方法使得得到的表达式为S。转移时我们通过左右儿子的f以及当前节点的运算符即能确定当前节点的f值。然后你会发现转移的实质就是FWT。。。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int P=1000000007;
char str[510];
int n,m,tot;
int f[170][(1<<16)+4],g[(1<<16)+4],p1[20],p2[20];
inline void add(int &x,int y) {x+=y; if(x>=P) x-=P;}
inline void dec(int &x,int y) {x-=y; if(x<=0) x+=P;}
inline void fwt1(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if((i>>h)&1) add(a[i],a[i^(1<<h)]);
}
inline void ufwt1(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if((i>>h)&1) dec(a[i],a[i^(1<<h)]);
}
inline void fwt0(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if(!((i>>h)&1)) add(a[i],a[i|(1<<h)]);
}
inline void ufwt0(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if(!((i>>h)&1)) dec(a[i],a[i|(1<<h)]);
}
int build(int l,int r)
{
int x=++tot;
if(l==r)
{
int i,j,S;
for(j=0;j<4;j++)
{
if(str[l]=='?'||str[l]=='A'+j)
{
for(S=i=0;i<16;i++) if((i>>j)&1) S|=1<<i;
f[x][S]++;
}
if(str[l]=='?'||str[l]=='a'+j)
{
for(S=i=0;i<16;i++) if(!((i>>j)&1)) S|=1<<i;
f[x][S]++;
}
}
return x;
}
int i,mid,t=0;
for(i=l;i<=r;i++)
{
t+=(str[i]=='(')-(str[i]==')');
if(!t) break;
}
mid=i+1;
int ls=build(l+1,mid-2),rs=build(mid+2,r-1);
if(str[mid]=='|')
{
fwt1(f[ls]),fwt1(f[rs]);
for(i=0;i<(1<<16);i++) f[x][i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt1(f[x]);
}
else if(str[mid]=='&')
{
fwt0(f[ls]),fwt0(f[rs]);
for(i=0;i<(1<<16);i++) f[x][i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt0(f[x]);
}
else
{
fwt0(f[ls]),fwt0(f[rs]);
for(i=0;i<(1<<16);i++) g[i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt0(g),ufwt0(f[ls]),ufwt0(f[rs]);
memcpy(f[x],g,sizeof(g));
fwt1(f[ls]),fwt1(f[rs]);
for(i=0;i<(1<<16);i++) g[i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt1(g);
for(i=0;i<(1<<16);i++) add(f[x][i],g[i]);
}
return x;
}
int main()
{
scanf("%s%d",str+1,&m),n=strlen(str+1);
int i,j,ans=0,S=0,t;
for(i=1;i<=m;i++)
{
for(S=j=0;j<4;j++) scanf("%d",&t),S|=t<<j;
scanf("%d",&t),p1[i]=S,p2[i]=t;
}
build(1,n);
for(i=0;i<(1<<16);i++)
{
for(j=1;j<=m;j++) if(((i>>p1[j])&1)!=p2[j]) break;
if(j>m) add(ans,f[1][i]);
}
printf("%d",ans);
return 0;
}
【CF582E】Boolean Function 树形DP+FWT的更多相关文章
- CF582E Boolean Function(DP,状态压缩,FMT)
简单题. 我第二道自己做出来的 2900 没毛病,我没切过 2800 的题 lqy:"CF 评分 2800 是中等难度" 我活个啥劲啊 为了方便(同时压缩状态个数),先建出表达式树 ...
- HDU5909 Tree Cutting(树形DP + FWT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T with n ve ...
- hdu 5909 Tree Cutting [树形DP fwt]
hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...
- HDU - 5909 Tree Cutting (树形dp+FWT优化)
题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...
- HDU.5909.Tree Cutting(树形DP FWT/点分治)
题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...
- hdu5909 Tree Cutting 【树形dp + FWT】
题目链接 hdu5909 题解 设\(f[i][j]\)表示以\(i\)为根的子树,\(i\)一定取,剩余节点必须联通,异或和为\(j\)的方案数 初始化\(f[i][val[i]] = 1\) 枚举 ...
- [cf582E]Boolean Function
由于每一个运算都有括号,因此添加的运算不会改变运算顺序 先将其建出一棵表达式树,也就是维护两个栈,是节点和运算符优先级单调递增的栈(设置左括号优先级最低,右括号弹出直至左括号) 每一次运算,也就是新建 ...
- HDU 5977 Garden of Eden (树形dp+快速沃尔什变换FWT)
CGZ大佬提醒我,我要是再不更博客可就连一月一更的频率也没有了... emmm,正好做了一道有点意思的题,就拿出来充数吧=.= 题意 一棵树,有 $ n (n\leq50000) $ 个节点,每个点都 ...
- fwt优化+树形DP HDU 5909
//fwt优化+树形DP HDU 5909 //见官方题解 // BestCoder Round #88 http://bestcoder.hdu.edu.cn/ #include <bits/ ...
随机推荐
- grid - 网格线命名
通过grid-template-rows和grid-template-columns定义网格时,网格线可以被命名.网格线名称也可以设置网格项目位置. grid-template-rows和grid-t ...
- 各hbase版本对hadoop各版本的支持情况
http://hbase.apache.org/book/configuration.html#basic.prerequisites HBase-0.94.x HBase-0.98.x (Sup ...
- (原)MobileNetV1
转载请注明出处: https://www.cnblogs.com/darkknightzh/p/9410540.html 论文: MobileNets: Efficient Convolutional ...
- 使用Kotlin优雅的开发Android应用
来源:https://juejin.im/post/5915c0a744d904006c4e3bcd demo下载地址:https://github.com/xiehui999/KotlinForAn ...
- Warning: Function created with compilation errors.
SQL> create or replace function 2 remove_constants(p_query in varchar2) return varchar2 3 as 4 l_ ...
- webpack 使用别名(resolve.alias)解决scss @import相对路径导致的问题
webpack.conf.js 中 resolve.alias 配置 resolve: { extensions: ['.js', '.vue'], alias: { '@': path.resolv ...
- Fraunhofer音频技术为MPEG未来高品质3D音频内容传输的标准依据
OFweek电子工程网讯:世界着名的音频和多媒体技术研究机构Fraunhofer IIS的基于信道/对象的方案获选成为未来MPEG-H 3D音频标准的依据,此项标准旨在传输高品质的3D音频内容.MPE ...
- 【R作图】蜜蜂群图beeswarm和jitter的使用
最近经常要画好看的盒形图,还要在上面加入散点,所以总结了两个方法. 第一种方法是,利用beeswarm函数: library(beeswarm) beeswarm 蜜蜂群图 http://rgm3.l ...
- Socket网络编程--聊天程序(8)
上一节已经完成了对用户的身份验证了,既然有了验证,那么接下来就能对不同的客户端进行区分了,所以这一节讲实现私聊功能.就是通过服务器对客户端的数据进行转发到特定的用户上, 实现私聊功能的聊天程序 实现的 ...
- [Big Data - Kafka] kafka学习笔记:知识点整理
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...