【CF582E】Boolean Function

题意:给你一个长度为n的表达式,其中未知数有A,B,C,D和?,运算有&和|和?(表达式中用括号确定了唯一的运算顺序)。?代表A,B,C,D或&,|。A,B,C,D的值是0或1。再给你m个条件$a,b,c,d,e$,代表A,B,C,D分别等于a,b,c,d时表达式的值为e。求有多少种将?填满的方式,符合给出的所有条件?

$n\le 500,m\le 2^4$

题解:CF总考这种用二进制表示特殊状态的题,感觉十分考验人类的抽象能力。

因为变量的可能情况的只有$2^4$种,所以我们用一个4位的二进制字符表示。这样一来我们就可以发现可能的表达式只有$2^{2^4}$种,所以我们再用一个16位的二进制来表示一个表达式(不要晕)。这个二进制数的第i位为0/1的意义是:如果把i用二进制表示,则i的每一位代表每个变量的取值。在这些变量分别取这些值时,这个表达式的值为0/1(千万不要晕)。

因为表达式是一堆括号围出来的,我们可以将括号的嵌套看成一个树形结构,并且是一棵二叉树。我们设f[x][S]表示对于当前节点对应的子树,有多少种方法使得得到的表达式为S。转移时我们通过左右儿子的f以及当前节点的运算符即能确定当前节点的f值。然后你会发现转移的实质就是FWT。。。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int P=1000000007;
char str[510];
int n,m,tot;
int f[170][(1<<16)+4],g[(1<<16)+4],p1[20],p2[20];
inline void add(int &x,int y) {x+=y; if(x>=P) x-=P;}
inline void dec(int &x,int y) {x-=y; if(x<=0) x+=P;}
inline void fwt1(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if((i>>h)&1) add(a[i],a[i^(1<<h)]);
}
inline void ufwt1(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if((i>>h)&1) dec(a[i],a[i^(1<<h)]);
}
inline void fwt0(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if(!((i>>h)&1)) add(a[i],a[i|(1<<h)]);
}
inline void ufwt0(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if(!((i>>h)&1)) dec(a[i],a[i|(1<<h)]);
}
int build(int l,int r)
{
int x=++tot;
if(l==r)
{
int i,j,S;
for(j=0;j<4;j++)
{
if(str[l]=='?'||str[l]=='A'+j)
{
for(S=i=0;i<16;i++) if((i>>j)&1) S|=1<<i;
f[x][S]++;
}
if(str[l]=='?'||str[l]=='a'+j)
{
for(S=i=0;i<16;i++) if(!((i>>j)&1)) S|=1<<i;
f[x][S]++;
}
}
return x;
}
int i,mid,t=0;
for(i=l;i<=r;i++)
{
t+=(str[i]=='(')-(str[i]==')');
if(!t) break;
}
mid=i+1;
int ls=build(l+1,mid-2),rs=build(mid+2,r-1);
if(str[mid]=='|')
{
fwt1(f[ls]),fwt1(f[rs]);
for(i=0;i<(1<<16);i++) f[x][i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt1(f[x]);
}
else if(str[mid]=='&')
{
fwt0(f[ls]),fwt0(f[rs]);
for(i=0;i<(1<<16);i++) f[x][i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt0(f[x]);
}
else
{
fwt0(f[ls]),fwt0(f[rs]);
for(i=0;i<(1<<16);i++) g[i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt0(g),ufwt0(f[ls]),ufwt0(f[rs]);
memcpy(f[x],g,sizeof(g));
fwt1(f[ls]),fwt1(f[rs]);
for(i=0;i<(1<<16);i++) g[i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt1(g);
for(i=0;i<(1<<16);i++) add(f[x][i],g[i]);
}
return x;
}
int main()
{
scanf("%s%d",str+1,&m),n=strlen(str+1);
int i,j,ans=0,S=0,t;
for(i=1;i<=m;i++)
{
for(S=j=0;j<4;j++) scanf("%d",&t),S|=t<<j;
scanf("%d",&t),p1[i]=S,p2[i]=t;
}
build(1,n);
for(i=0;i<(1<<16);i++)
{
for(j=1;j<=m;j++) if(((i>>p1[j])&1)!=p2[j]) break;
if(j>m) add(ans,f[1][i]);
}
printf("%d",ans);
return 0;
}

【CF582E】Boolean Function 树形DP+FWT的更多相关文章

  1. CF582E Boolean Function(DP,状态压缩,FMT)

    简单题. 我第二道自己做出来的 2900 没毛病,我没切过 2800 的题 lqy:"CF 评分 2800 是中等难度" 我活个啥劲啊 为了方便(同时压缩状态个数),先建出表达式树 ...

  2. HDU5909 Tree Cutting(树形DP + FWT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T with n ve ...

  3. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  4. HDU - 5909 Tree Cutting (树形dp+FWT优化)

    题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...

  5. HDU.5909.Tree Cutting(树形DP FWT/点分治)

    题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...

  6. hdu5909 Tree Cutting 【树形dp + FWT】

    题目链接 hdu5909 题解 设\(f[i][j]\)表示以\(i\)为根的子树,\(i\)一定取,剩余节点必须联通,异或和为\(j\)的方案数 初始化\(f[i][val[i]] = 1\) 枚举 ...

  7. [cf582E]Boolean Function

    由于每一个运算都有括号,因此添加的运算不会改变运算顺序 先将其建出一棵表达式树,也就是维护两个栈,是节点和运算符优先级单调递增的栈(设置左括号优先级最低,右括号弹出直至左括号) 每一次运算,也就是新建 ...

  8. HDU 5977 Garden of Eden (树形dp+快速沃尔什变换FWT)

    CGZ大佬提醒我,我要是再不更博客可就连一月一更的频率也没有了... emmm,正好做了一道有点意思的题,就拿出来充数吧=.= 题意 一棵树,有 $ n (n\leq50000) $ 个节点,每个点都 ...

  9. fwt优化+树形DP HDU 5909

    //fwt优化+树形DP HDU 5909 //见官方题解 // BestCoder Round #88 http://bestcoder.hdu.edu.cn/ #include <bits/ ...

随机推荐

  1. Windows如何安装pip

    下载这个文件:  https://bootstrap.pypa.io/get-pip.py 然后到下载目录执行Python命令:   (管理员权限执行) python get-pip.py

  2. 基于php5.5使用PHPMailer-5.2发送邮件

    PHPMailer - A full-featured email creation and transfer class for PHP. 在PHP环境中可以使用PHPMailer来创建和发送邮件. ...

  3. 【T07】不要低估tcp的性能

    1.tcp在ip的基础上增加了校验和.可靠性和流量控制的功能,而udp只增加了校验和的功能,看起来udp应该会比tcp快很多, 但事实不是这样,有时候tcp比udp的性能还要好. 2.思考,在什么情况 ...

  4. 如何将 Java 项目转换成 Maven 项目

    本文内容 Java 项目 Maven 项目 Java 项目转换成 Maven 项目 本文主要介绍如何将 Java 项目转换成 Maven 项目.首先要明确的是,用 Maven 管理 Java 项目的确 ...

  5. windows server 2012 浏览器IE10无法下载。

    cannot download in IE 10 of window server 2012 中文版解决办法: 1.打开IE,按F12,选择兼容浏览器为IE 9 2.选择IE的Internet选项菜单 ...

  6. 分区工具parted的详解及常用分区使用方法【转】

    来源:http://blog.51cto.com/zhangmingqian/1068779 分区工具parted的详解及常用分区使用方法 一.         parted的用途及说明 概括使用说明 ...

  7. 如何部署hadoop集群

    假设我们有三台服务器,他们的角色我们做如下划分: 10.96.21.120 master 10.96.21.119 slave1 10.96.21.121 slave2 接下来我们按照这个配置来部署h ...

  8. 12C新特性 -- 共享asm口令文件

    12C中,ASM口令文件,可以提供本地.远程登录asm的验证.当然,要想使用asm口令文件验证,必须为每个asm创建一个口令文件. 如果是使用asm存储,asmca在配置asm磁盘组的会后,会自动为a ...

  9. 分享一个Godaddy的优惠码,可以优惠35%——2013-11-23

    国外的域名注册商就是好,还有优惠码,付费的时候贴上优惠码就能免相应的金额,不错. 在网上找的一个35%优惠的优惠码,可以买域名和主机.(主机就免了,有点贵,域名不错) 我买了个com域名,原本$12. ...

  10. 【spark 深入学习 03】Spark RDD的蛮荒世界

    RDD真的是一个很晦涩的词汇,他就是伯克利大学的博士们在论文中提出的一个概念,很抽象,很难懂:但是这是spark的核心概念,因此有必要spark rdd的知识点,用最简单.浅显易懂的词汇描述.不想用学 ...