1.题目:

A game for one player is played on a board consisting of N consecutive squares, numbered from 0 to N − 1. There is a number written on each square. A non-empty zero-indexed array A of N integers contains the numbers written on the squares. Moreover, some squares can be marked during the game.

At the beginning of the game, there is a pebble on square number 0 and this is the only square on the board which is marked. The goal of the game is to move the pebble to square number N − 1.

During each turn we throw a six-sided die, with numbers from 1 to 6 on its faces, and consider the number K, which shows on the upper face after the die comes to rest. Then we move the pebble standing on square number I to square number I + K, providing that square number I + K exists. If square number I + K does not exist, we throw the die again until we obtain a valid move. Finally, we mark square number I + K.

After the game finishes (when the pebble is standing on square number N − 1), we calculate the result. The result of the game is the sum of the numbers written on all marked squares.

For example, given the following array:

    A[0] = 1
A[1] = -2
A[2] = 0
A[3] = 9
A[4] = -1
A[5] = -2

one possible game could be as follows:

  • the pebble is on square number 0, which is marked;
  • we throw 3; the pebble moves from square number 0 to square number 3; we mark square number 3;
  • we throw 5; the pebble does not move, since there is no square number 8 on the board;
  • we throw 2; the pebble moves to square number 5; we mark this square and the game ends.

The marked squares are 0, 3 and 5, so the result of the game is 1 + 9 + (−2) = 8. This is the maximal possible result that can be achieved on this board.

Write a function:

int solution(int A[], int N);

that, given a non-empty zero-indexed array A of N integers, returns the maximal result that can be achieved on the board represented by array A.

For example, given the array

    A[0] = 1
A[1] = -2
A[2] = 0
A[3] = 9
A[4] = -1
A[5] = -2

the function should return 8, as explained above.

Assume that:

  • N is an integer within the range [2..100,000];
  • each element of array A is an integer within the range [−10,000..10,000].

Complexity:

  • expected worst-case time complexity is O(N);
  • expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).

Elements of input arrays can be modified.

Copyright 2009–2015 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.
 

2.题目分析

这个题目写的超级复杂,其实说的内容很简单,就是我们掷骰子,1~6,代表向前走几步。那么一个棋盘的长度为N,每个节点上有一个数字,我们要通过掷色子刚好走到最后一个格子,在这个过程中会经过x个点。问题就是要我们输出这x个点最大可能的和是多少。

这个题如果不是看了关于dynamicprogramming的介绍的话一下子就蒙傻逼了。这个可能小多啊,跳到所有的正数是没话说,不过因为有负数,如何选择我跳入那个负数,避开哪个负数?如果有一长串的负数我如何跳入?更何况时间复杂度要求为O(N)。。这。。头好大。

但是有了dynamic这个算法,我们便可以换一个思路来向这个问题。

我们并不是要向后看,而是向前看。有点数学归纳法的赶脚。

首先,我们随便的站到位置W上。那么,如果要到达这个点,只能是从其前6个位置跳过来的,因为色子最大就到6呢。

那么如果问题到这个点结束,因为W位置上的数字是固定的,那么要跳到这个点时和为最大,则需要找到前六个点中的最大值即可。那么以此类推,最终会回到第0个位置。这个位置的最大值是固定的就是其本身。我们便可以递推的推出所有位置的最大值~

而且我们在每一个位置,内循环查找的最大次数为6,所以即使我有两层循环,那么时间复杂度也只是6N~=O(N)。线性。

我们还需要一个数组存储每一个位置的最大值需要N个空间。

3.代码

int maxLastSix(int A[],int pos)
{
int step=;
int result = A[pos-step];
while((pos-step)>=)
{
if(step>)
{
return result;
}
result = (result>A[pos-step])?result:A[pos-step];
step++;
}
return result;
} int solution(int A[], int N) {
// write your code in C99
int dp[N];
int i=; dp[]=A[]; for(i=;i<N;i++)
{
int temp = maxLastSix(dp,i);
dp[i]=A[i]+temp;
// printf("%d\n",temp);
} return dp[N-];
}

Codility NumberSolitaire Solution的更多相关文章

  1. codility flags solution

    How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...

  2. Solution of NumberOfDiscIntersections by Codility

    question:https://codility.com/programmers/lessons/4 this question is seem like line intersections qu ...

  3. Solution to Triangle by Codility

    question: https://codility.com/programmers/lessons/4 we need two parts to prove our solution. on one ...

  4. the solution of CountNonDivisible by Codility

    question:https://codility.com/programmers/lessons/9 To solve this question , I get each element's di ...

  5. GenomicRangeQuery /codility/ preFix sums

    首先上题目: A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which ...

  6. *[codility]Peaks

    https://codility.com/demo/take-sample-test/peaks http://blog.csdn.net/caopengcs/article/details/1749 ...

  7. *[codility]Country network

    https://codility.com/programmers/challenges/fluorum2014 http://www.51nod.com/onlineJudge/questionCod ...

  8. *[codility]AscendingPaths

    https://codility.com/programmers/challenges/magnesium2014 图形上的DP,先按照路径长度排序,然后依次遍历,状态是使用到当前路径为止的情况:每个 ...

  9. *[codility]MaxDoubleSliceSum

    https://codility.com/demo/take-sample-test/max_double_slice_sum 两个最大子段和相拼接,从前和从后都扫一遍.注意其中一段可以为0.还有最后 ...

随机推荐

  1. Unity UGUI知识点

    1.Canvas 属性:Screen Space Overlay -画布随屏幕大小改变而改变,面板不会被其他控件挡住 Screen Space camera 面板能被其他控件挡住 world spac ...

  2. float4与half4数据类型

    连续4个32位float类型数的向量 HLSL数据类型 GPU是以四维向量为基本单位来计算的.4个浮点数所组成的float4向量是GPU内置的最基本类型.使用GPU对两个float4向量进行计算,与C ...

  3. 关于HTTP协议,一篇就够了

    HTTP简介 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的传送 ...

  4. C#进阶系列——WebApi 接口测试工具:WebApiTestClient

    前言:这两天在整WebApi的服务,由于调用方是Android客户端,Android开发人员也不懂C#语法,API里面的接口也不能直接给他们看,没办法,只有整个详细一点的文档呗.由于接口个数有点多,每 ...

  5. 如何在一台新电脑上配置JAVA开发环境

    对于JAVA新手来说,刚开始要学JAVA,而自己的电脑上毫无与JAVA开发有关的环境,应该如何进行配置呢? (安卓新手也需要JAVA开发环境) 第一步,下载.安装java JRE JRE (Java ...

  6. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

  7. android studio 使用jar包,arr包和怎么使用githup开源项目中的aar包或module

    我这里的android studio的版本是2.2.3版本 一.现在大家都用android studio了,就有人问怎么使用jar包 其实使用jar包比较简单 直接吧jar放入工程的app目录下的li ...

  8. Android技术分享收集

    Android高工必备技能! 我的 Android 开发实战经验总结 微信Android客户端架构演进之路 微信Android版智能心跳方案 流量优化: WebP 探寻之路 HTTP 协议缓存机制详解 ...

  9. css挤带边框的三角

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  10. 扩展欧几里得 exGCD

    Elementary Number Theory - Extended Euclid Algorithm Time Limit : 1 sec, Memory Limit : 65536 KB Jap ...