数论好劲啊

原题:

给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。
说明:这里的拼就是使得你选出的向量之和为(x,y)

t<=50000,-2*10^9<=a,b,x,y<=2*10^9

这题我自己想出了思路,但是怎么都WA,最后膜拜lzx的题解才A

首先其实向量只有四个,比如(a,b)和(-a,-b)是一个东西

然后就可以列出酱紫的方程:

a(x1+x2)+b(y1+y2)=x

b(x1-x2)+b(y1-y2)=y

如果想要有解,首先要保证两个方程分别有解,这个根据扩展欧几里得的性质判断(c%gcd(a,b)!=0时ax+by=c有解)

然后还要满足解出来的(x1+x2),(y1+y2),(x1-x2),(y1-y2)能够解出整数解x1,x2,y1,y2

设x1+x2=e,x1-x2=f,e+f=2*x1,所以当e+f为偶数时有解,y同理

exgcd搞一下判断即可

然后有个问题就是exgcd解出来的答案可能满足条件,但是对这个答案进行一些调整依旧满足条件但是奇偶性变了

调整最多就是x或y加减a或b,总共四种情况,都不能满足偶数条件的时候就无解了

注意longlong

代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
#define ll long long
ll rd(){int z=,mk=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')mk=-; ch=getchar();}
while(ch>=''&&ch<=''){z=(z<<)+(z<<)+ch-''; ch=getchar();}
return z*mk;
}
ll gcd(ll x,ll y){ return y?gcd(y,x%y):x;}
void exgcd(ll a,ll b,ll &x,ll &y){
if(!b){ x=,y=; return ;}
exgcd(b,a%b,x,y);
ll c=x; x=y,y=c-a/b*x;
}
int n;
char chck(ll x1,ll y1,ll x2,ll y2,ll a,ll b){
if(!((x1+x2)&) && !((y1+y2)&)) return 'Y';
x1+=b,y1-=a;
if(!((x1+x2)&) && !((y1+y2)&)) return 'Y';
x2+=a,y2-=b;
if(!((x1+x2)&) && !((y1+y2)&)) return 'Y';
x1+=b,y1-=a;
if(!((x1+x2)&) && !((y1+y2)&)) return 'Y';
return 'N';
}
int main(){//freopen("ddd.in","r",stdin);
cin>>n;
ll a,b,x,y;
ll x1,x2,y1,y2,ggcd;
while(n--){
a=rd(),b=rd(),x=rd(),y=rd();
exgcd(a,b,x1,y1),exgcd(a,b,y2,x2);
ggcd=gcd(a,b);
if(x%ggcd || y%ggcd) printf("N\n");
else printf("%c\n",chck(x1*x/ggcd,y1*x/ggcd,x2*y/ggcd,y2*y/ggcd,a/ggcd,b/ggcd));
//if(((x1*x+x2*y)/ggcd)&1 || ((y1*x+y2*y)/ggcd)&1) printf("N\n");
//else printf("Y\n");
}
return ;
}

【HAOI2011】 向量的更多相关文章

  1. 【BZOJ2299】[HAOI2011]向量(数论)

    [BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...

  2. 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1255  Solved: 575 Description 给你一 ...

  3. P2520 [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  4. [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  5. 【[HAOI2011]向量】

    靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...

  6. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  7. 牛客19985 HAOI2011向量(裴属定理,gcd)

    https://ac.nowcoder.com/acm/problem/19985 看到标签“裴属定理”就来做下,很眼熟,好像小学奥数学过.. 题意:给你a,b,x,y,你可以任意使用(a,b), ( ...

  8. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  9. BZOJ2299: [HAOI2011]向量

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299 题解:乱搞就可以了... 不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a) ...

  10. luogu P2520 [HAOI2011]向量

    传送门 一堆人说数论只会gcd,我连gcd都不会,菜死算了qwq Orzyyb 这题欺负我数学不好qwq 首先可以发现实际上有如下操作:x或y±2a,x或y±2b,x+a y+b,x+b y+a(后面 ...

随机推荐

  1. TTL反相器的外部特性

    TTL反相器的外部特性 电压传输特性 输入端噪声容限特性 静态输入特性: 静态输出特性: 动态特性: 传输延迟时间:是由晶体管的延迟时间,电阻以及寄生电容元素引起的.包括俩部分:输入由低电平跳为高电平 ...

  2. mac系统下安装Composer和laravel

    先手动下载Composer 地址:https://getcomposer.org/composer.phar 下载后mv composer.phar /usr/local/bin/composer 这 ...

  3. 房间安排 (nyoj 168)

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=168 分析:找到一天中需要最多的房间即可 #include<iostream> ...

  4. Traumland--梦乡--IPA--德语

    德国电影<<英俊少年>>的插曲.

  5. C++中的局部变量、全局变量、局部静态变量、全局静态变量的区别

    局部变量(Local variables)与 全局变量: 在子程序或代码块中定义的变量称为局部变量,在程序的一开始定义的变量称为全局变量. 全局变量作用域是整个程序,局部变量作用域是定义该变量的子程序 ...

  6. java中String的认识

    String不是Java的基本数据类型.String类是final类,故不可继承. String 和 StringBuffer之间的区别非常大,Java平台提供了两个类,两者都是包含多个字符的的字符数 ...

  7. request 的下载文件

    前言:Content-Type类型为octets/stream,这种一般是文件类型了,比如有时候需要导出excel数据,下载excel这种场景如何用python来实现呢? 1.点击导出按钮 2.代码实 ...

  8. shell日常实战练习——通过监视用户登陆找到入侵者

    #!/usr/bin/bash #用户检测入侵工具 AUTHLOG=/var/log/secure if [[ -n $1 ]];then AUTHLOG=$1 echo "Using Lo ...

  9. UUID自动生成

    (uuid,available,createtime)  select left(replace(uuid(), '-', ''),24),1,utc_timestamp() 使用: ),,utc_t ...

  10. python3:logging模块 输出日志到文件

    python自动化测试脚本运行后,想要将日志保存到某个特定文件,使用python的logging模块实现 参考代码: import logging def initLogging(logFilenam ...