传送门:Problem 3276

参考资料:

  [1]:挑战程序设计竞赛

先献上AC代码,题解晚上再补

题意:

  John有N头牛,这些牛有的头朝前("F"),有的朝后("B"),John想让所有的牛头都超前。

  现在,John得到了一个机器,每次可以让连续的 K 头牛转向,问最少需要用多少次(M)机器可以使所有的牛头都超前?

题解:

  变量解释:

    dir[i] : dir[i]=0 -> 第i头牛面朝前;dir[i]=1 -> 第i头牛面朝后

    f[i] : f[i]=0 -> 在第i头牛出不进行反转操作;f[i]=1 -> 在第i头牛出进行反转操作

  首先,需要明白两点:

    (1):交换区间反转的顺序对结果是没有影响的。

    (2):对同一个区间进行两次以上的反转是多余的。

  因此,问题就转化成了求需要被反转的区间的集合。

  定义 k : 每次需要反转的牛的个数(1 <= k <= N)

     i : 第 i 头牛(1 <= i <= N-k+1,初始 i =  1)

    sum : 受前面反转影响([i-k+1,i-1]),来到第 i 头牛,总共反转的次数

    res : 存储反转次数

  (1):对于第i头来说,如果它是面朝后的,则需要一次反转使其面朝前,而之后的反转区间指定不包含此牛。

  (2):判断第i头牛是否需要反转,如果需要,f[i]=1,res++;i++;

  (3):重复(2)过程,直到 i > N-k+1为止

AC代码:

 #include<iostream>
#include<cstdio>
using namespace std;
const int maxn=5e3+; int N;
int dir[maxn];
int f[maxn]; int Calculate(int k)
{
int res=;
int sum=;
for(int i=;i <= N-k+;++i)
{
if(i-k > )//当前的i只受到区间 [i-k+1,i-1] 反转的影响,所以需要去除i-k对i的反转影响
sum -= f[i-k];
if((dir[i]+sum)% != )//判断dir[i] 是否为偶数,偶数代表面朝前
f[i]=,res++;
sum += f[i];
}
for(int i=N-k+;i <= N;++i)//检查后 k-1头牛是否全都面朝前
{
if(i-k > )//解释同上
sum -= f[i-k];
if((dir[i]+sum)% != )
return -;
}
return res;
}
void Solve()
{
int K=,M=N;
for(int k=;k <= N;++k)//每次反转 k 头牛
{
int m=Calculate(k);
if(m != - && m < N)
K=k,M=m;
}
printf("%d %d\n",K,M);
} int main()
{
scanf("%d",&N);
for(int i=;i <= N;++i)
{
getchar();
char ch=getchar();
dir[i]=(ch == 'F' ? :);
}
Solve();
}

poj 3276(反转)的更多相关文章

  1. 反转(开关问题) POJ 3276

    POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...

  2. POJ 3276 Face The Right Way 反转

    大致题意:有n头牛,有些牛朝正面,有些牛朝背面.现在你能一次性反转k头牛(区间[i,i+k-1]),求使所有的牛都朝前的最小的反转次数,以及此时最小的k值. 首先,区间反转的顺序对结果没有影响,并且, ...

  3. POJ 3276 Face The Right Way(反转)

      Face The Right Way Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6038   Accepted: 2 ...

  4. POJ 3276 (开关问题)

    题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...

  5. Enum:Face The Right Way(POJ 3276)

    面朝大海,春暖花开 题目大意:农夫有一群牛,牛排成了一排,现在需要把这些牛都面向正确的方向,农夫买了一个机器,一次可以处理k只牛,现在问你怎么处理这些牛才可以使操作数最小? 这道题很有意思,其实这道题 ...

  6. POJ 3276 Face The Right Way 翻转(开关问题)

    题目:Click here 题意:n头牛排成一列,F表示牛面朝前方,B表示面朝后方,每次转向K头连续的牛的朝向,求让所有的牛都能面向前方需要的最少的操作次数M和对应的最小的K. 分析:一个区间反转偶数 ...

  7. Face The Right Way POJ - 3276 (开关问题)

    Face The Right Way Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6707   Accepted: 312 ...

  8. Face The Right Way POJ - 3276(区间)

    Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, li ...

  9. Face The Right Way(POJ 3276)

    原题如下: Face The Right Way Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6708   Accepte ...

随机推荐

  1. PAT甲题题解-1130. Infix Expression (25)-中序遍历

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789828.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  2. 对于VS软件的个人评价

    因为还是一个菜鸟,对于VS这样的大软件还只能是自己个人的理解,以前用的是VC++,后来因为电脑系统更新,开始接触了VS,个人觉得还是vs2010更好用一些,作为一款windows平台应用程序的集成开发 ...

  3. format()函数用法

    基本语法是通过 {} 和 : 来代替以前的 % . format 函数可以接受不限个参数,位置可以不按顺序. 直接打印输出参数: 通过字典设置参数: 通过列表索引设置参数:

  4. PHP使用Redis实现消息队列

    消息队列可以使用MySQL来实现,可以参考博客PHP使用MySQL实现消息队列,虽然用MySQL可以实现,但是一般不这么用,因为MySQL的数据都存在硬盘中,而从硬盘中对MySQL的操作,I/O花费的 ...

  5. MySQL: Connection Refused,调整 mysql.ini中的 max_connections

    连接相同的结构的MySQL数据库,一套库Tomcat启动正常,另一套库一直报Connection Refused. 可以断定是连接数太小了.查找mysql.ini中的 max_connections, ...

  6. java面向对象的核心思想

    java面向对象的特征之一:封装 1.封装性的使用 package edu.tongji.classdemo; /* 封装性 1.封装的目的:保护某些属性和方法不被外部所见 2.封装的实现 为属性和方 ...

  7. 序列化与反序列化,json,pickle,xml,shelve,configparser模块

    序列化与反序列化 什么是序列化?序列化就是将内存中的数据结构转换成一种中间格式存储到硬盘或者基于网络传输.反序列化就是将硬盘中或者网络中传来的一种数据格式转换成内存中数据结构. 为什么要有? 1.可以 ...

  8. hive桶表

    创建桶表,提高查询速度, 下免.tom'jerry'scott如果他们经过hash计算,得到的hash值一样,则放到桶一个表中. 创建桶表 指明桶的分桶条件,以sname分桶;分为5个桶

  9. .gitignore & .DS_Store

    .gitignore & .DS_Store https://stackoverflow.com/questions/107701/how-can-i-remove-ds-store-file ...

  10. MT【8】和e有关的一个极限

    解答: 评:这里涉及到e有关的极限的单调性,求导数得: