LOJ2537 PKUWC2018 Minimax 树形DP、线段树合并
题意:自己去看
首先可以知道,每一个点都有几率被选到,所以$i$与$V_i$的关系是确定了的。
所以我们只需要考虑每一个值的取到的概率。
很容易设计出一个$DP$:设$f_{i,j}$为在第$i$个点取到权值第$j$小的点的概率,转移就是$f_{i,j}=f_{lson,j} \times (\sum \limits _{k<i} f_{rson,k} \times p_x + \sum \limits _{k > i} f_{rson,k} \times (1 - p_x))$($lson$和$rson$之间可以交换),显然是可以前缀和优化的
当然前缀和优化也不够,$O(n^2)$只能过$40pts$。考虑优化。发现在合并的时候$lson$与$rson$之间的元素是互不冲突的,所以可以考虑线段树合并,每一次合并的时候把两边的贡献记录下来,在线段树上打标记即可。
#include<bits/stdc++.h>
#define ld long double
#define int long long
#define mid ((l + r) >> 1)
#define lch Tree[now].ch[0]
#define rch Tree[now].ch[1]
//This code is written by Itst
using namespace std; inline int read(){
int a = ;
bool f = ;
char c = getchar();
while(c != EOF && !isdigit(c)){
if(c == '-')
f = ;
c = getchar();
}
while(c != EOF && isdigit(c)){
a = (a << ) + (a << ) + (c ^ '');
c = getchar();
}
return f ? -a : a;
} const int MAXN = , MOD = ;
struct node{
int mark , sum , ch[];
}Tree[MAXN * ];
int pri[MAXN] , root[MAXN] , lsh[MAXN] , ch[MAXN][] , cnt , N , cntNode , ny; inline void pushup(int now){
Tree[now].sum = (Tree[lch].sum + Tree[rch].sum) % MOD;
} inline void pushdown(int now){
if(Tree[now].mark != ){
Tree[lch].sum = Tree[lch].sum * Tree[now].mark % MOD;
Tree[rch].sum = Tree[rch].sum * Tree[now].mark % MOD;
Tree[lch].mark = Tree[lch].mark * Tree[now].mark % MOD;
Tree[rch].mark = Tree[rch].mark * Tree[now].mark % MOD;
Tree[now].mark = ;
}
} void insert(int& now , int l , int r , int tar){
if(!now){
now = ++cntNode;
Tree[now].mark = ;
}
if(l == r){
Tree[now].sum = ;
return;
}
pushdown(now);
if(mid >= tar)
insert(lch , l , mid , tar);
else
insert(rch , mid + , r , tar);
pushup(now);
} int mer(int p , int q , int markp , int markq , int pri){
if(!(p + q))
return ;
if(!p){
Tree[q].mark = Tree[q].mark * markq % MOD;
Tree[q].sum = Tree[q].sum * markq % MOD;
return q;
}
if(!q){
Tree[p].mark = Tree[p].mark * markp % MOD;
Tree[p].sum = Tree[p].sum * markp % MOD;
return p;
}
pushdown(p);
pushdown(q);
int m1 = Tree[Tree[q].ch[]].sum , n1 = Tree[Tree[p].ch[]].sum , m2 = Tree[Tree[q].ch[]].sum , n2 = Tree[Tree[p].ch[]].sum;
Tree[p].ch[] = mer(Tree[p].ch[] , Tree[q].ch[] , (markp + m1 * ( - pri) % MOD * ny) % MOD , (markq + n1 * ( - pri) % MOD * ny) % MOD , pri);
Tree[p].ch[] = mer(Tree[p].ch[] , Tree[q].ch[] , (markp + m2 * pri % MOD * ny) % MOD , (markq + n2 * pri % MOD * ny) % MOD , pri);
pushup(p);
return p;
} int getAns(int now , int l , int r){
if(l == r)
return l * lsh[l] % MOD * Tree[now].sum % MOD * Tree[now].sum % MOD;
else{
pushdown(now);
return (getAns(lch , l , mid) + getAns(rch , mid + , r)) % MOD;
}
} void dfs(int now){
if(!ch[now][])
insert(root[now] , , cnt , pri[now]);
else
if(!ch[now][]){
dfs(ch[now][]);
root[now] = root[ch[now][]];
}
else{
dfs(ch[now][]);
dfs(ch[now][]);
root[now] = mer(root[ch[now][]] , root[ch[now][]] , , , pri[now]);
}
} inline int poww(long long a , int b){
int times = ;
while(b){
if(b & )
times = times * a % MOD;
a = a * a % MOD;
b >>= ;
}
return times;
} signed main(){
#ifndef ONLINE_JUDGE
freopen("2537.in" , "r" , stdin);
//freopen("2537.out" , "w" , stdout);
#endif
N = read();
for(int i = ; i <= N ; ++i){
int a = read();
if(!ch[a][])
ch[a][] = i;
else
ch[a][] = i;
}
ny = poww( , MOD - );
for(int i = ; i <= N ; ++i){
pri[i] = read();
if(!ch[i][])
lsh[++cnt] = pri[i];
}
sort(lsh + , lsh + cnt + );
for(int i = ; i <= N ; ++i)
if(!ch[i][])
pri[i] = lower_bound(lsh + , lsh + cnt + , pri[i]) - lsh;
dfs();
cout << getAns(root[] , , cnt);
return ;
}
LOJ2537 PKUWC2018 Minimax 树形DP、线段树合并的更多相关文章
- [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)
还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...
- 【洛谷5298】[PKUWC2018] Minimax(树形DP+线段树合并)
点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值. ...
- LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】
LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...
- loj2537 「PKUWC2018」Minimax 【概率 + 线段树合并】
题目链接 loj2537 题解 观察题目的式子似乎没有什么意义,我们考虑计算出每一种权值的概率 先离散化一下权值 显然可以设一个\(dp\),设\(f[i][j]\)表示\(i\)节点权值为\(j\) ...
- 【pkuwc2018】 【loj2537】 Minmax DP+线段树合并
今年年初的时候参加了PKUWC,结果当时这一题想了快$2h$都没有想出来.... 哇我太菜啦.... 昨天突然去搜了下哪里有题,发现$loj$上有于是就去做了下. 结果第一题我5分钟就把所有细节都想好 ...
- BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)
BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...
- [PKUWC2018]Minimax [dp,线段树合并]
好妙的一个题- 我们设 \(f_{i,j}\) 为 \(i\) 节点出现 \(j\) 的概率 设 \(l = ch[i][0] , r = ch[i][1]\) 即左儿子右儿子 设 \(m\) 为叶子 ...
- P6847-[CEOI2019]Magic Tree【dp,线段树合并】
正题 题目链接:https://www.luogu.com.cn/problem/P6847 题目大意 \(n\)个点的一棵树上,每个时刻可以割掉一些边,一些节点上有果实表示如果在\(d_i\)时刻这 ...
- POJ 3162 Walking Race 树形DP+线段树
给出一棵树,编号为1~n,给出数m 漂亮mm连续n天锻炼身体,每天会以节点i为起点,走到离i最远距离的节点 走了n天之后,mm想到知道自己这n天的锻炼效果 于是mm把这n天每一天走的距离记录在一起,成 ...
随机推荐
- 从零开始学习html(一) Html介绍
我是初学者,这个是我学习的过程,当做笔记记录下来,如有错误希望高手指正. 原地址 一.代码初体验,制作我的第一个网页 <!DOCTYPE HTML> <html> <he ...
- Mybatis PageHelper 简单使用
流程 1,maven 依赖 2,在 mybatis 配置文件启用插件 3,修改 service 层 依赖 <!-- https://mvnrepository.com/artifact/com. ...
- 用U盘制作EXSI启动盘
用U盘制作EXSI启动盘这是一个比较困难的事,一般的人会用UltraISO这个软件来制作.但是很遗憾,这样的方法很不好,我试了好几次都没有成功.主要是不能引导. 之后我换了一个刻录软件(rufus), ...
- jmeter 压力测试
转自: https://blog.csdn.net/cbzcbzcbzcbz/article/details/78023327 Jmeter压力测试简单教程(包括服务器状态监控) 2017年09月18 ...
- 给 Linux 系统“减肥”,系统垃圾清理_系统安装与配置管理_Linux Today - Google Chrome
给 Linux 系统"减肥",系统垃圾清理 2013/10/16 linux 系统安装与配置管理 评论 15,555 Linux 计算机安装后,在我们不断的使用过程中,因 ...
- 基于TensorFlow进行TensorBoard可视化
# -*- coding: utf-8 -*- """ Created on Thu Nov 1 17:51:28 2018 @author: zhen "&q ...
- python常用模块之re模块(正则)
python种的re模块常用的5种方法,分别是re.match re.search re.findall re.split re.sub. 在介绍五种方法之前,需要介绍一下正则的基础. . ...
- 字符串通过在配置文件配置三个key来进行加密解密
在这里和大家分享一个加密util,相对于md5加密相信大家都已经很熟悉了吧,md5是不可逆的一种加密方式,虽说不可逆但是网上已经有了破解的方法,我这边分享一个免费的破解 网址给大家:https://w ...
- java基础-温故而知新(02)
基本数据的自动拆装箱及享元设计模式 1.1 自动装箱 -128~127 之间的整数,装在一个内存区域. 超过这个范围的整数,装在不同的内存区域. 1.2 自动拆箱 ...
- Centos7.5调试/etc/sysctl.conf文件导致宕机
今天安装greenplus数据库,需要调试一个核心文件/etc/sysctl.conf文件,结果导致系统异常宕机,出现的问题就是使用任何命令都不能输出正确的结果,只有这个显示: 不知道是什么原因,ls ...