题目描述

给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得

D=(A*B-C)*A^T最大。其中A^T为A的转置。输出D

输入

第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij.
接下来一行输入N个整数,代表矩阵C。矩阵B和矩阵C中每个数字都是不超过1000的非负整数。

输出

输出最大的D

样例输入

3
1 2 1
3 1 0
1 2 3
2 3 7

样例输出

2

提示

1<=N<=500

如果没有C矩阵,答案就是B矩阵中每个数的和假设为ans,那么有了C矩阵,我们就是想使ans减小的尽量少。

对于C中每个元素,要么就是ans直接减掉这个元素的值,也就是A中对应位置选1;要么就是不要B中的一些元素,也就是A中一些的位置选0来防止ans减掉这个C中元素的值。

那么这个问题就可转化成最小割,将S连向B中每个点,流量为对应B中的点权值;将B中每个点连向这个点对应的行和列代表的点,流量为INF;最后再将列代表的点连向汇点,流量为C中对应点的权值。

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int next[5000001];
int to[5000001];
int val[5000001];
int head[1000001];
int tot=1;
int q[1000001];
int bak[1000001];
int n,x;
int S,T;
int ans;
int sum;
int d[1000001];
void add(int x,int y,int v)
{
tot++;
next[tot]=bak[x];
bak[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=bak[y];
bak[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(d,-1,sizeof(d));
q[r++]=T;
d[T]=2;
while(l<r)
{
int now=q[l];
for(int i=bak[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i^1]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[S]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int &i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]-1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
memcpy(head,bak,sizeof(bak));
ans+=dfs(S,INF);
}
}
int main()
{
scanf("%d",&n);
S=n*n+n+1;
T=n*n+n+2;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&x);
sum+=x;
add(S,(i-1)*n+j,x);
add((i-1)*n+j,n*n+i,INF);
add((i-1)*n+j,n*n+j,INF);
}
}
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
add(n*n+i,T,x);
}
dinic();
printf("%d",sum-ans);
}

BZOJ3996[TJOI2015]线性代数——最小割的更多相关文章

  1. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  2. bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...

  3. [TJOI2015]线性代数(最小割)

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...

  4. bzoj 3996 [TJOI2015]线性代数——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...

  5. BZOJ3996 [TJOI2015]线性代数 【最小割】

    题目 给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 D=(AB-C)A^T最大.其中A^T为A的转置.输出D 输入格式 第一行输入一个整数N,接下来N行输入B矩阵,第i行第 ...

  6. BZOJ3996 [TJOI2015]线性代数

    就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...

  7. BZOJ3996 TJOI2015线性代数

    先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...

  8. BZOJ 3996 线性代数 最小割

    题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...

  9. BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

随机推荐

  1. javascript-mqtt

    js client使用paho-mqtt,官网地址:http://www.eclipse.org/paho/,参考http://www.eclipse.org/paho/clients/js/官网给出 ...

  2. QT 字符串的使用技巧总结

    QT 的字符串的 使用的总结. 1.字符串截取函数的使用 QString str; QString csv = "forename,middlename,surname,phone" ...

  3. [07] 使用注解完成IOC配置

    1.扫描配置 之前使用的Spring的Bean管理都是通过xml的配置文件来操作的,在Spring3.0之后已经引入了注解形式,Spring可以在指定路径下进行扫描,寻找标注了@Component.@ ...

  4. 5个python爬虫教材,让小白也有爬虫可写,含视频教程!

    认识爬虫   网络爬虫,如果互联网是一张蜘蛛网,网络爬虫既是一个在此网上爬行的蜘蛛,爬了多少路程即获取到多少数据. python写爬虫的优势   其实以上功能很多语言和工具都能做,但是用python爬 ...

  5. eclipse打断点的调试

    对于程序员来说,最重要的技能之一其实是在发现问题的时候,定位问题,然后才能解决问题. 发现问题的能力十分的重要.而debug的水平就是基础. 打断点之后,操作相应的步骤,然后eclipse会跳转到相应 ...

  6. ASP.NET MVC和ASP.NET Core MVC中获取当前URL/Controller/Action (转载)

    ASP.NET MVC 一.获取URL(ASP.NET通用): [1]获取完整url(协议名+域名+虚拟目录名+文件名+参数) string url=Request.Url.ToString(); [ ...

  7. ASP.NET MVC中jQuery与angularjs混合应用传参并绑定数据

    要求是这样子的,在一个列表页中,用户点击详细铵钮,带记录的主键值至另一页.在另一外页中,获取记录数据,然后显示此记录数据在网页上. 先用动图演示: 昨天有分享为ng-click传递参数 <ang ...

  8. 记录网件r6220路由器登录配置

    1.设置本地连接为自动获取ip和DNS地址 2.使用网线连接电脑和路由器的LAN口 3.http://routerlogin.net/BRS_index.htm 4.用户名和密码: admin pas ...

  9. Beta版本发布报告

    项目名称 学霸系统写手机客户端 项目版本 Beta版本 负责人 北京航空航天大学计算机学院 hots团队 联系方式 http://www.cnblogs.com/hotsbuaa/ 要求发布日期 20 ...

  10. 跟踪分析Linux内核的启动过程--实验报告 分析 及知识重点

    跟踪分析Linux内核的启动过程 攥写人:杨光  学号:20135233 ( *原创作品转载请注明出处*) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.stud ...