BZOJ

求字典序最大,容易想到对原串建后缀数组求\(rk\)。

假设当前区间是\([l,r]\),对于在\([l,r]\)中的两个后缀\(i,j\)(\(i<j\)),显然我们不能直接比较\(rk_i,rk_j\)来比较\(i,j\)在\([l,r]\)中谁的字典序更大。(比如对于串\(babb\),\(l=1,r=3\),在原串中,后缀\(3(bb)\)的排名比\(1(babb)\)靠后,但是在\([1,3]\)中显然应该是\(1\)的字典序更大)

但还是可以讨论一下:

  • 若\(rk_i>rk_j\),\(i\)在\([l,r]\)中的字典序一定比\(j\)大。
  • 若\(rk_i<rk_j\),且\(LCP(i,j)<r-j+1\),\(j\)在\([l,r]\)中的字典序一定比\(i\)大。
  • 若\(rk_i<rk_j\),且\(LCP(i,j)\geq r-j+1\),\(i\)在\([l,r]\)中的字典序一定比\(j\)大。

所以可以得到,对于\(i\),令\(j\)是\(i\)后边第一个\(rk_j>rk_i\)的位置,\(i\)会在\([i,j+LCP(i,j)-1]\)这个区间成为答案(用\(R[i]\)表示\(i\)做答案的这个区间的右端点)。

所以我们把询问按左端点排序,\(i\)从\(n\)到\(1\)倒着枚举,用单调栈维护这些可能成为答案的区间。

当枚举到\(i\)时,处理左端点为\(i\)的询问。所以单调栈的每个元素存三个值:\(L,R,p\),表示当询问右端点在\([L,R]\)中时,答案为后缀\(p\)。

我们每加入一个\(i\),它可能会覆盖掉后面几个区间成为最优解,如图:

(此时单调栈中自底向上依次存的是红色、绿色、紫色区间)

拿紫色的线段为例(假设紫色线段是由\(j\)作为答案,\(k\)就是\(R[j]\)),此时无论询问右端点在点\(j\)还是在点\(k\),后缀\(i\)都要比\(j\)更优(字典序更大,比较方式同前文所说),所以蓝色会覆盖紫色,直接把紫色线段弹出栈。同理判断蓝色完全覆盖绿色后也把绿色线段弹出栈。

然后在栈中加入元素:\(\{i,R[i],i\}\)(如前文所说的\(L,R,p\))。

当然还会有这种情况:

比如对于串oamodap,在\(i=2\)时\(4\)在右端点为\(4\sim5\)时会成为答案,而当\(i=1\)时,\(4\)只在右端点为\(5\)时成为答案,右端点为\(1\sim4\)时是\(1\)作为答案。

蓝色\(i\)在紫色\(j\)的某左半段区间中会作为答案。

也就是当右端点在点\(j\)处时,\(i\)比\(j\)更优;而右端点在点\(k\)时,还是\(j\)比\(i\)更优。

此时我们可以二分找到\(R[i]\)。就是判断右端点在哪个位置时,恰好使得后缀\(j\)比\(i\)更优(当然其实不需要二分,\(R[i]\)就是\(j+LCP(i,j)\))。

记这个位置为\(p\)。然后我们把\(j\)影响的区间\([j,k]\)改为\([p,k]\)。

此时\(i\)所影响的区间就是\([i,p-1]\)(\(R[i]=p-1\)),所以在栈中加入元素\(\{i,p-1,i\}\)。

(\(x\)影响区间\([l,r]\)就是指询问右端点在\([l,r]\)中时\(x\)作为答案)

对于询问\([l,r]\),此时\(l=i\),而单调栈中的区间是有序的。所以在单调栈中二分\(r\)在哪段区间中就可以了。

复杂度\(O((n+q)\log n)\)。

//12640kb	1028ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=1e5+5; struct Node
{
int l,r,p;
}sk[N];
struct Quries
{
int id,l,r;
inline bool operator <(const Quries &x)const
{
return l<x.l;
}
}q[N];
struct Suffix_Array
{
int tm[N],rk[N],sa[N],sa2[N],ht[N],Log[N],st[N][17];
char s[N]; inline void Init_ST(const int n)
{
for(int i=2; i<=n; ++i) Log[i]=Log[i>>1]+1;
for(int i=1; i<=n; ++i) st[i][0]=ht[i];
for(int j=1; j<=Log[n]; ++j)
for(int t=1<<j-1,i=n-t; i; --i)
st[i][j]=std::min(st[i][j-1],st[i+t][j-1]);
}
inline int LCP(int l,int r)
{
l=rk[l], r=rk[r]; if(l>r) std::swap(l,r);
++l;
int k=Log[r-l+1];
return std::min(st[l][k],st[r-(1<<k)+1][k]);
}
int Build()
{
scanf("%s",s+1);
const int n=strlen(s+1);
int *x=rk,*y=sa2,m=300;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]=s[i]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[i]]--]=i;
for(int k=1,p=0; k<n; k<<=1,m=p,p=0)
{
for(int i=n-k+1; i<=n; ++i) y[++p]=i;
for(int i=1; i<=n; ++i) if(sa[i]>k) y[++p]=sa[i]-k; for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[y[i]]]--]=y[i]; std::swap(x,y), x[sa[1]]=p=1;
for(int i=2; i<=n; ++i)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?p:++p;
if(p>=n) break;
}
for(int i=1; i<=n; ++i) rk[sa[i]]=i;
ht[1]=0;
for(int i=1,k=0,p; i<=n; ++i)
{
if(rk[i]==1) continue;
if(k) --k;
p=sa[rk[i]-1];
while(i+k<=n && p+k<=n && s[i+k]==s[p+k]) ++k;
ht[rk[i]]=k;
}
Init_ST(n);
return n;
}
}sa; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline bool Check(int i,int j,int r)
{
return sa.rk[i]>sa.rk[j]||sa.LCP(i,j)>=r-j+1;
} int main()
{
static int Ans[N];
const int n=sa.Build(),Q=read();
for(int i=1; i<=Q; ++i) q[i]=(Quries){i,read(),read()};
std::sort(q+1,q+1+Q); q[0].l=0, sk[0].l=n+1;
int top=1,now=Q; sk[1]=(Node){n,n,n};
while(q[now].l==n) Ans[q[now--].id]=n;
for(int i=n-1; i; --i)
{
bool f=0;
while(top)
{
if(Check(i,sk[top].p,sk[top].r)) --top;
else if(Check(i,sk[top].p,sk[top].l)) {f=1; break;}
else break;
}
if(f)
{
// int j=sk[top].p,l=sk[top].l,r=sk[top].r,mid;
// while(l<r)
// {
// if(Check(i,j,mid=l+r>>1)) l=mid+1;
// else r=mid;
// }
// sk[top].l=l;
sk[top].l=sk[top].p+sa.LCP(i,sk[top].p);//这里不需要二分。。=-=
}
sk[++top]=(Node){i,sk[top-1].l-1,i};
while(q[now].l==i)
{
int p=q[now].r,l=1,r=top,mid;
while(l<=r)
{
mid=l+r>>1;
if(p>=sk[mid].l && p<=sk[mid].r) break;
else if(p>sk[mid].r) r=mid-1;
else l=mid+1;
}
Ans[q[now--].id]=sk[mid].p;
}
}
for(int i=1; i<=Q; printf("%d\n",Ans[i++])); return 0;
}

BZOJ.4453.cys就是要拿英魂!(后缀数组 单调栈)的更多相关文章

  1. BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)

    BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...

  2. 【BZOJ-3238】差异 后缀数组 + 单调栈

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1561  Solved: 734[Submit][Status] ...

  3. BZOJ_3879_SvT_后缀数组+单调栈

    BZOJ_3879_SvT_后缀数组+单调栈 Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个 ...

  4. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  5. 【BZOJ3879】SvT 后缀数组+单调栈

    [BZOJ3879]SvT Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干 ...

  6. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  7. BZOJ 4453: cys就是要拿英魂![后缀数组 ST表 单调栈类似物]

    4453: cys就是要拿英魂! Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 46[Submit][Status][Discu ...

  8. BZOJ4199 [Noi2015]品酒大会 【后缀数组 + 单调栈 + ST表】

    题目 一年一度的"幻影阁夏日品酒大会"隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发"首席品 酒家"和"首席猎手"两个奖项,吸 ...

  9. bzoj 4453 cys就是要拿英魂! —— 后缀数组+单调栈+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4453 这种问题...一般先把询问离线,排序: 区间对后缀排名的影响在于一些排名大而位置靠后的 ...

随机推荐

  1. Java 画一个5X5的方形矩阵

    效果图如下: 思路:创建一个窗口,使其居中于屏幕中央,使用drawRect(x, y, width, height)画正方形. import java.awt.Graphics; import jav ...

  2. easyui实现背景图片半透明状态,悬浮在大背景之上

    首先是查找素材,使用AI将所需要的图案画出来,切记将图案的背景设置为所需要的透明状态.项目使用的是easyui架构 为啥加两个背景图呢,因为这样的布局最开始是给一个矩形框加上的背景图片,若是还使用矩形 ...

  3. Docker相关释义

    Docker相关释义 基础网站:http://www.runoob.com/docker/docker-tutorial.html Docker的思想来自于集装箱,集装箱解决了什么问题?在一艘大船上, ...

  4. logging模板日志格式

    logging模板日志格式 创建loginfo.py模块,然后导入定义的logging配置,即可使用 cat loginfo.py """ logging配置 " ...

  5. 作为完美主义者(强迫症)如何将linux的eth1网卡修改为eth0网卡

    1:由于你是克隆的虚拟机或者直接就是使用别人的Centos操作系统直接打开到自己本地的虚拟机,网卡可能就是eth1而不是eth0,下面简单写一下如何将eth1修改为eth0,步骤如下所示: 2:如果你 ...

  6. Http系列笔记

    万能的HttpClient (Framework与NetCore 都支持) string url = "http://localhost:5000/api/values"; //p ...

  7. mzf的考验

    题解: 比较水吧 显然是平衡树的操作 然后就是写写写 用对拍来查错相比之下直接样例查还是比较容易的 刚开始没有优化常数没开O2就变成暴力分了smg 开了O2就a了 代码: #include <b ...

  8. bzoj4520【CQOI2016】K远点对

    题解: kd-tree裸题 对每个点维护最近的k个开个堆维护一下

  9. 【NPM】常见问题解决

    问题列表 问题一:npm install 执行报错 npm ERR! Unexpected end of JSON input while parsing near '...ependencies&q ...

  10. NSFileManager和NSFileHandler的作用, category的理解

    NSFileManager类可以管理文件系统中的文件和目录,也可以定位.判断是否存在.创建.拷贝.删除文件和目录,还可以获得文件和目录的信息: 对于读写文件,NSFileManager只可以读写字符串 ...