【BZOJ2820】YY的GCD

Description

神犇YY虐完数论后给傻×kAc出了一题

给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对

kAc这种傻×必然不会了,于是向你来请教……

多组输入

Input

第一行一个整数T 表述数据组数

接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2

10 10

100 100

Sample Output

30

2791

不妨设\(n<m\)

答案为\(\displaystyle\sum_{g为质数}\sum_{i=1}^{\lfloor \frac{n}{g} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{g} \rfloor}[gcd(i,j)==1]\)

根据套路 ,后面的\([gcd(i,j)==1]可以写成\displaystyle \sum_{d|i,d|j}\mu(d)\)

和式变换一下:\(\displaystyle \sum_{g为质数}\sum_{d=1}^{\lfloor \frac{n}{g} \rfloor}\mu(d)\lfloor \frac{n}{gd} \rfloor\lfloor \frac{m}{gd} \rfloor\)

根据套路:设\(T=gd,则\displaystyle\sum_{T=1}^{n}\sum_{d|T且\frac{n}{d}为质数}\mu(d)\lfloor \frac{n}{gd} \rfloor\lfloor \frac{m}{gd} \rfloor\)

又是套路:对于后面两个除法,我们数论分块就可以了。对于\(\sum_{d|T且\frac{n}{d}为质数}\mu(d)\)我们可以预处理出前缀和。

代码:

#include<bits/stdc++.h>
#define N 10000005
#define ll long long
using namespace std; int T;
int pri[700000];
ll mu[N],sum[N];
bool vis[N]; void pre() {
mu[1]=1;
for(int i=2;i<=10000000;i++) {
if(!vis[i]) pri[++pri[0]]=i,mu[i]=-1;
for(int j=1;j<=pri[0]&&i*pri[j]<=10000000;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) {
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(ll i=1;i<=pri[0];i++) {
for(ll j=1;j*pri[i]<=10000000;j++) {
sum[j*pri[i]]+=mu[j];
}
}
for(ll i=1;i<=10000000;i++) sum[i]+=sum[i-1];
} ll n,m;
int main() {
pre();
scanf("%d",&T);
while(T--) {
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
ll last,ans=0;
for(ll i=1;i<=n;i=last+1) {
last=min(n/(n/i),m/(m/i));
ans+=(sum[last]-sum[i-1])*(n/i)*(m/i);
}
cout<<ans<<'\n';
}
return 0;
}

【BZOJ2820】YY的GCD的更多相关文章

  1. [BZOJ2820]YY的GCD

    [BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  2. BZOJ2820 YY的GCD 【莫比乌斯反演】

    BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...

  3. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  4. BZOJ2820:YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  5. Bzoj-2820 YY的GCD Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...

  6. 【莫比乌斯反演】BZOJ2820 YY的GCD

    Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...

  7. BZOJ2820: YY的GCD(反演)

    题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...

  8. 【反演复习计划】【bzoj2820】YY的GCD

    这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...

  9. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  10. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

随机推荐

  1. PHP连接Memcache代码

    <?php $mem = new Memcache; $mem->connect('127.0.0.1', 11211) or die ("Could not connect&q ...

  2. JavaWeb学习 (二十一)————基于Servlet+JSP+JavaBean开发模式的用户登录注册

    一.Servlet+JSP+JavaBean开发模式(MVC)介绍 Servlet+JSP+JavaBean模式(MVC)适合开发复杂的web应用,在这种模式下,servlet负责处理用户请求,jsp ...

  3. 设计模式-----Builder模式

    前言 近日,看到Myabtis中组件中SqlSessionFactory由SqlSessionFactoryBuilder().build()生成时,且采用Builder模式,遂记录学习之. SqlS ...

  4. 配置hadoop-eclipse-plugin(版本hadoop2.7.3):

    配置hadoop-eclipse-plugin(版本hadoop2.7.3): 1:首先下载我们需要的  hadoop-eclipse-plugin-2.7.3.jar,winutils.exe 和  ...

  5. webpack4 系列教程(五): 处理CSS

    这节课讲解webpack4中打包css的应用.v4 版本和 v3 版本并没有特别的出入. >>> 本节课源码 >>> 所有课程源码 教程所示图片使用的是 githu ...

  6. Java 初级软件工程师 认证考试试卷1

    Java 初级软件工程师 认证考试试卷   笔试(A卷)   考试时间150分钟 总分 100分     姓    名_______________________ 身份证号_____________ ...

  7. sql server: 最短路径

    --------------------------------------------------------------------- -- Road System 道路 ------------ ...

  8. cf666E. Forensic Examination(广义后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...

  9. instanceof和typeof的细节

    我骑着小毛驴,喝着大红牛哇,哩个啷格里格朗,别问我为什么这木开心,如果活着不是为了浪荡那将毫无意义 今天来捋一捋我们平日经常用的instanceof和typeof的一些小问题 typeof: type ...

  10. vue-cli脚手架之package.json

    package.json文件配置及其含义,这个是vue-cli自动生成的文件,先贴一张代码及其含义: { "name": "secondproject",//模 ...