BZOJ4008 : [HNOI2015]亚瑟王(期望dp)
题意
略(看了20min才看懂。。。)
题解
我一开始天真地一轮轮推期望,发现根本不好算。。。
唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq
发现有句神奇的话
记住,期望要倒着推。。。
这个是 __debug 曾说的一句话
概率要顺着推,期望要倒着推。
似乎看上去很有道理 运用到这道题上就很优秀了。
我们考虑 \(dp_{i,j}\) 为考虑到 \(i\) 张卡牌(其中 \(i+1 \thicksim n\),已经考虑完了)并且玩完 \(j\) 轮的期望伤害。
然后有个显然 奇妙的dp方程咯(很神)
\]
考虑分两种
- 对于卡牌 \(i\) ,到 \(j\) 次还没有发动的概率为 \((1-p_i)^j\) 。那么我们可以直接可以乘上后一个的也在第 \(j\) 轮的期望就行了。
- 第 \(j\) 次发动的概率就为 \(1-(1-p_i)^j\) 。那么后一个就在前一轮(\(j-1\) 轮)了,也乘上那个期望。
不难发现,逆推 \(i\) 的话,该算的概率全都会算上,而且不会算错。(因为前面会乘上那个概率来修改后面计算的贡献)
最后答案就是 \(dp_{1,r}\) 了。
这样比网上很多递推然后用概率乘系数的要优秀许多了qwq
时间复杂度 \(\Theta(Tnr)\)
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
const int N = 1010;
double p[N], d[N], dp[N][N];
int n, r, cases;
int main () {
scanf("%d", &cases);
while (cases --) {
scanf ("%d%d", &n, &r);
For (i, 1, n)
scanf("%lf%lf", &p[i], &d[i]);
Fordown (i, n, 1) {
double P = 1.00 - p[i];
For (j, 1, r) {
dp[i][j] = dp[i + 1][j] * P + (dp[i + 1][j - 1] + d[i]) * (1 - P);
P *= (1.00 - p[i]);
}
}
printf ("%.10lf\n", dp[1][r]);
}
return 0;
}
BZOJ4008 : [HNOI2015]亚瑟王(期望dp)的更多相关文章
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
- P3239 [HNOI2015]亚瑟王 期望dp
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...
- P3239 [HNOI2015]亚瑟王 期望 dp
LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...
- 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)
题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...
- BZOJ4008. [HNOI2015]亚瑟王 期望概率dp
看到这道题想什么? 一个好转移的状态由于T最多444所以把每个点控制在O(400000)以内,所以对于n和r最多乘一次因此猜f[n][r],f[r][n],首先一轮一轮的搞不好转移,那么先想一想f[n ...
- [HNOI2015]亚瑟王(期望+DP)
题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...
- BZOJ [HNOI2015]亚瑟王 ——期望DP
发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...
- [HNOI2015]亚瑟王[期望DP]
也许更好的阅读体验 \(\mathcal{Description}\) 给出\(n\)个技能,每个技能按输入顺序有\(p[i]\)的概率释放并造成\(d[i]\)的伤害.每轮游戏从前往后顺序查看每个技 ...
- 概率DP——BZOJ4008 [HNOI2015]亚瑟王
[HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...
- 【BZOJ4008】[HNOI2015]亚瑟王 期望
[BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...
随机推荐
- Luogu3793 由乃救爷爷 分块、ST表
传送门 因为昨天写暴力写挂在UOJ上用快排惨遭卡常,所以今天准备写一个卡常题消遣消遣,然后时间又垫底了QAQ 这道题显然需要支持一个\(O(N)\)预处理\(O(1)\)查询的ST表,显然普通的ST表 ...
- SQL跨服务器查询数据库
有时候一个项目需要用到两个数据库或多个数据库而且这些数据库在不同的服务器上时,就需要通过跨服务器查找数据 在A服务器的数据库a查询服务器B的数据库b 的bb表 假如服务器B的IP地址为:10.0.22 ...
- 马加爵遗书 VS 药家鑫遗书
前言:今天是贰零壹柒年最后一个工作日,亦是2017年12月29日,因为明天就放元旦假了,公司同事比往常相对轻松些.中午吃完午饭,在办公室大家有说有笑,有人说姓马的人都挺牛X啊,比如:马云, ...
- Spring Boot(十六):使用 Jenkins 部署 Spring Boot
Jenkins 是 Devops 神器,本篇文章介绍如何安装和使用 Jenkins 部署 Spring Boot 项目 Jenkins 搭建.部署分为四个步骤: 第一步,Jenkins 安装 第二步, ...
- copy constructor
copy constructor也分为trivial和nontrivial两种 如果class展现出bitwise copy semantics(按位拷贝语义),则不会构造出 copy constru ...
- Nagios图像绘制插件PNP4Nagios部署和测试
注:本篇博客Nagios版本Nagios-3.5.1 1. 概述2. 关于PNP4Nagios3. 部署PNP4Nagios3.1 下载PNP4Nagios3.2 编译安装3.3 目录文件说明4. 配 ...
- Linux umask
新建一个文件或目录,它的默认权限是什么?如果要修改一个用户创建的文件和目录的默认权限该如何做?本文将介绍相关的内容.说明:本文的演示环境为 ubuntu 16.04. 文件的默认权限 为了查看用户创建 ...
- Individual P1: Preparation
Individual Project - Word frequency program tally the frequency of words under a directory (2 modes) ...
- Linux内核分析 笔记八 进程的切换和系统的一般执行过程 ——by王玥
一.进程切换的关键代码switch_to的分析 (一)进程调度与进程调度的时机分析 1.不同类型的进程有不同的调度需求 第一种分类: I/O-bound:频繁地进行I/O,花费很多的时间等待I/O操作 ...
- 《蹭课神器》Beta版使用说明
相比 Alpha 版,我对主界面进行了优化,使主界面更加简洁 同时数据库增加了一个表,里面存放的是课程的详细信息