BZOJ4008 : [HNOI2015]亚瑟王(期望dp)
题意
略(看了20min才看懂。。。)
题解
我一开始天真地一轮轮推期望,发现根本不好算。。。
唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq
发现有句神奇的话
记住,期望要倒着推。。。
这个是 __debug 曾说的一句话
概率要顺着推,期望要倒着推。
似乎看上去很有道理 运用到这道题上就很优秀了。
我们考虑 \(dp_{i,j}\) 为考虑到 \(i\) 张卡牌(其中 \(i+1 \thicksim n\),已经考虑完了)并且玩完 \(j\) 轮的期望伤害。
然后有个显然 奇妙的dp方程咯(很神)
\]
考虑分两种
- 对于卡牌 \(i\) ,到 \(j\) 次还没有发动的概率为 \((1-p_i)^j\) 。那么我们可以直接可以乘上后一个的也在第 \(j\) 轮的期望就行了。
- 第 \(j\) 次发动的概率就为 \(1-(1-p_i)^j\) 。那么后一个就在前一轮(\(j-1\) 轮)了,也乘上那个期望。
不难发现,逆推 \(i\) 的话,该算的概率全都会算上,而且不会算错。(因为前面会乘上那个概率来修改后面计算的贡献)
最后答案就是 \(dp_{1,r}\) 了。
这样比网上很多递推然后用概率乘系数的要优秀许多了qwq
时间复杂度 \(\Theta(Tnr)\)
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
const int N = 1010;
double p[N], d[N], dp[N][N];
int n, r, cases;
int main () {
scanf("%d", &cases);
while (cases --) {
scanf ("%d%d", &n, &r);
For (i, 1, n)
scanf("%lf%lf", &p[i], &d[i]);
Fordown (i, n, 1) {
double P = 1.00 - p[i];
For (j, 1, r) {
dp[i][j] = dp[i + 1][j] * P + (dp[i + 1][j - 1] + d[i]) * (1 - P);
P *= (1.00 - p[i]);
}
}
printf ("%.10lf\n", dp[1][r]);
}
return 0;
}
BZOJ4008 : [HNOI2015]亚瑟王(期望dp)的更多相关文章
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
- P3239 [HNOI2015]亚瑟王 期望dp
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...
- P3239 [HNOI2015]亚瑟王 期望 dp
LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...
- 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)
题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...
- BZOJ4008. [HNOI2015]亚瑟王 期望概率dp
看到这道题想什么? 一个好转移的状态由于T最多444所以把每个点控制在O(400000)以内,所以对于n和r最多乘一次因此猜f[n][r],f[r][n],首先一轮一轮的搞不好转移,那么先想一想f[n ...
- [HNOI2015]亚瑟王(期望+DP)
题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...
- BZOJ [HNOI2015]亚瑟王 ——期望DP
发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...
- [HNOI2015]亚瑟王[期望DP]
也许更好的阅读体验 \(\mathcal{Description}\) 给出\(n\)个技能,每个技能按输入顺序有\(p[i]\)的概率释放并造成\(d[i]\)的伤害.每轮游戏从前往后顺序查看每个技 ...
- 概率DP——BZOJ4008 [HNOI2015]亚瑟王
[HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...
- 【BZOJ4008】[HNOI2015]亚瑟王 期望
[BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...
随机推荐
- SQL Server聚合函数与聚合开窗函数 (转载)
以下面这个表的数据作为示例. 什么是聚合函数?聚合函数:聚合函数就是对一组值进行计算后返回单个值(即分组).聚合函数在计算时都会忽略空值(null).所有的聚合函数均为确定性函数.即任何时候使用一组相 ...
- Auto-ML之自动化特征工程
1. 引言 个人以为,机器学习是朝着更高的易用性.更低的技术门槛.更敏捷的开发成本的方向去发展,且Auto-ML或者Auto-DL的发展无疑是最好的证明.因此花费一些时间学习了解了Auto-ML领域的 ...
- LOJ #6074. 「2017 山东一轮集训 Day6」子序列
#6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...
- Codeforces 987E Petr and Permutations(数组的置换与复原 、结论)
题目连接: Petr and Permutations 题意:给出一个1到n的序列,Petr打乱了3n次,Um_nik打乱了7n+1次,现在给出被打乱后的序列,求是谁打乱的. 题解:因为给出了一个3* ...
- C-数据结构-typedef的用法
.typedef的用法 # include <stdio.h> typedef int zhang; //为数据类为int从新取名为zhang 等价于int typedef struct ...
- 读《移山之道——VSTS软件开发指南》
读<移山之道>这本书差不多用了一个星期的时间,感觉还是收获了一些知识的,以前只是会简单地编个小程序(虽然现在也是这样),但看过这本书之后我对软件开发这个概念的认识度有了从一片模糊到了解大体 ...
- M1阶段个人总结
经过4周的开发,我们团队的第一阶段已经结束了. 这一个月来我由于其他事情较多,所以开发的工作主要交给了另外的三名同学. 我主要负责制定代码规范和工程结构,通过github来跟进项目进度,提供一些技术支 ...
- 网络:Xen理解
Xen是由剑桥大学计算机实验室开发的一个开源项目.是一个直接运行在计算机硬件之上的用以替代操作系统的软件层,它能够在计算机硬件上并发的运行多个客户操作系统(Guest OS). 一.Xen虚拟化类型 ...
- SE Springer小组之《Spring音乐播放器》可行性研究报告五、六
5 可选择的其他系统方案 曾经考虑过制作闹钟系统,但考虑到闹钟系统在电脑应用中极其不实用,所以此方案未通过. 6 投资及效益分析 6.1支出 本软件只用于完成课程学习要求,不用做商用,无基础设备等支出 ...
- Sprint 冲刺第三阶段第一天
1.今晚我在整理之前的代码,检查细节,然后发现游戏要返回上一界面竟然出现了问题“项目停止运行”,仔细检查没办法解决,后来百度可能是因为修改了之前文件的名字,可在AndroidManifest.xml中 ...