洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题
题目背景
none!
题目描述
在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。对于给定的方格棋盘,按照取数要求编程找出总和最大的数。
输入输出格式
输入格式:
第 \(1\) 行有 \(2\) 个正整数 \(m\) 和 \(n\),分别表示棋盘的行数和列数。接下来的 \(m\) 行,每行有 \(n\) 个正整数,表示棋盘方格中的数。
输出格式:
程序运行结束时,将取数的最大总和输出
说明
\(n,m\le 100\)
积累一下思维方式
棋盘不妨先进行黑白染色,然后可以得到一个二分图。
考虑我们需要把点集划分成两份,两份之间没有边连接,可以联想到最小割是做这个的。
最小割割的是边,想办法把点权搞到边上,因为我们本来就是二分图,所以两边源汇直接连点权的容量,图两边连inf,表示割不掉。其余边割掉代表割的是点,然后就把两个图搞不连通了。
Code:
#include <cstdio>
#include <cstring>
const int N=1e4+10;
const int inf=0x3f3f3f3f;
int min(int x,int y){return x<y?x:y;}
int head[N],to[N<<4],Next[N<<4],edge[N<<4],cnt=1;
void add(int u,int v,int w)
{
to[++cnt]=v,edge[cnt]=w,Next[cnt]=head[u],head[u]=cnt;
to[++cnt]=u,edge[cnt]=0,Next[cnt]=head[v],head[v]=cnt;
}
int q[N],l,r,dep[N],n,m,s,t,sum;
bool bfs()
{
memset(dep,0,sizeof dep);
dep[q[l=r=1]=s]=1;
while(l<=r)
{
int now=q[l++];
for(int v,i=head[now];i;i=Next[i])
if(!dep[v=to[i]]&&edge[i])
{
dep[v]=dep[now]+1;
if((q[++r]=v)==t) return true;
}
}
return false;
}
int dfs(int now,int flow)
{
if(now==t) return flow;
int res=flow,bee;
for(int v,i=head[now];i&&res;i=Next[i])
if(dep[v=to[i]]==dep[now]+1&&edge[i])
{
bee=dfs(v,min(res,edge[i]));
if(!bee) dep[v]=0;
edge[i]-=bee,edge[i^1]+=bee;
res-=bee;
}
return flow-res;
}
const int dx[5]={0,-1,0,1,0};
const int dy[5]={0,0,1,0,-1};
int main()
{
scanf("%d%d",&n,&m);
s=n*m+1,t=s+1;
for(int x,i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
sum+=x;
int id=(i-1)*m+j;
if(i+j&1)
{
add(s,id,x);
for(int k=1;k<=4;k++)
{
int di=i+dx[k],dj=j+dy[k];
if(di&&dj&&di<=n&&dj<=m)
add(id,(di-1)*m+dj,inf);
}
}
else add(id,t,x);
}
int flow,maxflow=0;
while(bfs())
if(flow=dfs(s,inf)) maxflow+=flow;
printf("%d\n",sum-maxflow);
return 0;
}
2019.1.16
洛谷 P2774 方格取数问题 解题报告的更多相关文章
- 洛谷 - P2774 - 方格取数问题 - 二分图最大独立点集 - 最小割
https://www.luogu.org/problemnew/show/P2774 把两个相邻的节点连边,这些边就是要方便最小割割断其他边存在的,容量无穷. 这种类似的问题的话,把二分图的一部分( ...
- [洛谷P2774]方格取数问题
题目大意:给你一个$n\times m$的方格,要求你从中选择一些数,其中没有相邻两个数,使得最后和最大 题解:网络流,最小割,发现相邻的两个点不可以同时选择,进行黑白染色,原点向黑点连一条容量为点权 ...
- 洛谷P2774 方格取数问题(最小割)
传送门 考虑一下,答案就是全局和减去舍弃和 不难发现,如果我们按行数+列数的奇偶性分为两类,那么每一类中的数必然互不相邻 那么我们把原图的点分为黑点和白点两类,原地向白点连边,黑点向汇点连边,容量为点 ...
- 洛谷P2774 方格取数问题(最小割)
题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...
- 洛谷 [P2774] 方格取数问题
二分图最大点权独立集 通过题目描述我们可以很明显的看出要通过二分图建模,二分图求最大独立点集很容易,就是建立二分图求n-最小割,然而这里加入了权值,而且权值是在点上的,那么我们对于每个点连一条到源点或 ...
- 洛谷 P2774 方格取数问题【最小割】
因为都是正整数,所以当然取得越多越好.先把所有点权加起来,黑白染色后,s向所有黑点连流量为点权的边,所有白点向t连流量为点权的边,然后黑点向相邻的四个白点连流量为inf的边,表示不可割,这样一来,对于 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
随机推荐
- Redis对象占用内存分析
当你往Redis中插入了一系统对象,如何分析这些对象的占用情况? 1.我们可以在Redis的控制台使用info命令来查看各项指标,其中有一项是Memory,可以通过存储前后的used_memory差异 ...
- JXOI2018简要题解
JXOI2018简要题解 T1 排序问题 题意 九条可怜是一个热爱思考的女孩子. 九条可怜最近正在研究各种排序的性质,她发现了一种很有趣的排序方法: Gobo sort ! Gobo sort 的算法 ...
- iOS开发简记(3):tips提示
我有一个需求:在点击或长按某个按钮时,需要显示提示,包括简单的文字提示,还有复杂一点的图片甚至是动态图的提示(可能还要加上文字). (1)文字tips 使用之前介绍的qmuikit里面的QMUITip ...
- Zabbix监控系统部署:配置详解
1. 全局配置 ListenPort ,监听端口 ,取值范围为1024-32767,默认端口10051 SourceIP,外发连接源地址 LogType,日志类型:单独日志文件,系统文件,控制台输出 ...
- Individual Project复审
复审代码的来源:12061162 王骜 王骜同学的代码注释较多,读起来还是比较容易懂. 代码遵从模块化思想,各个模块之间分工明确,功能重复少,模块之间联系紧密,相互调用明确. 处理单词过程运用了正则表 ...
- 第三个Sprint冲刺第四天(燃尽图)
- Spring注解 开发
- jq源码解析之绑在$,jQuery上面的方法
1.当我们用$符号直接调用的方法.在jQuery内部是如何封装的呢?有没有好奇心? // jQuery.extend 的方法 是绑定在 $ 上面的. jQuery.extend( { //expand ...
- Jenkins 登录提示 登录无效 的解决办法
学习自:https://www.cnblogs.com/amberly/p/6288773.html 1. jenkins服务器重启之后, 再次登录提示登录无效. 重启多次也无法解决. 2. 根据文档 ...
- linux学习之centos(四):git的安装
整个流程如下:(参考文章:linux安装git方法) [carsonzhu@localhost 桌面]$ wget https://github.com/git/git/archive/v2.8.3. ...