Normal Equation of Computing Parameters Analytically
Normal Equation
Note: [8:00 to 8:44 - The design matrix X (in the bottom right side of the slide) given in the example should have elements x with subscript 1 and superscripts varying from 1 to m because for all m training sets there are only 2 features x0 and x1. 12:56 - The X matrix is m by (n+1) and NOT n by n. ]
Gradient descent gives one way of minimizing J. Let’s discuss a second way of doing so, this time performing the minimization explicitly and without resorting to an iterative algorithm. In the "Normal Equation" method, we will minimize J by explicitly taking its derivatives with respect to the θj ’s, and setting them to zero. This allows us to find the optimum theta without iteration. The normal equation formula is given below:


There is no need to do feature scaling with the normal equation.
The following is a comparison of gradient descent and the normal equation:

With the normal equation, computing the inversion has complexity
So if we have a very large number of features, the normal equation will be slow. In practice, when n exceeds 10,000 it might be a good time to go from a normal solution to an iterative process.
Normal Equation Noninvertibility
When implementing the normal equation in octave we want to use the 'pinv' function rather than 'inv.' The 'pinv' function will give you a value of θ even if
is not invertible.
If
is noninvertible, the common causes might be having :
- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. m ≤ n). In this case, delete some features or use "regularization" (to be explained in a later lesson).
Solutions to the above problems include deleting a feature that is linearly dependent with another or deleting one or more features when there are too many features.
Normal Equation of Computing Parameters Analytically的更多相关文章
- Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...
- 5种方法推导Normal Equation
引言: Normal Equation 是最基础的最小二乘方法.在Andrew Ng的课程中给出了矩阵推到形式,本文将重点提供几种推导方式以便于全方位帮助Machine Learning用户学习. N ...
- coursera机器学习笔记-多元线性回归,normal equation
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- (三)用Normal Equation拟合Liner Regression模型
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...
- 【转】Derivation of the Normal Equation for linear regression
I was going through the Coursera "Machine Learning" course, and in the section on multivar ...
- 机器学习入门:Linear Regression与Normal Equation -2017年8月23日22:11:50
本文会讲到: (1)另一种线性回归方法:Normal Equation: (2)Gradient Descent与Normal Equation的优缺点: 前面我们通过Gradient Desce ...
- Normal Equation
一.Normal Equation 我们知道梯度下降在求解最优参数\(\theta\)过程中需要合适的\(\alpha\),并且需要进行多次迭代,那么有没有经过简单的数学计算就得到参数\(\theta ...
- CS229 3.用Normal Equation拟合Liner Regression模型
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...
- 正规方程 Normal Equation
正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/5103 ...
随机推荐
- Windows 下 Sublime Text 默认打开方式问题解决办法
Sublime Text 2 是很受ACMer喜爱的文本编辑器 但是绿色版删除后无法设置为默认打开方式...而且网上也没有给出明确的解决办法 注册表的解决办法: 删除 HKEY_CURRENT_USE ...
- vector转数组
vector转数组 由于vector内部的数据是存放在连续的存储空间,vector转数组事实上只需要获取vector中第一个数据的地址和数据的长度即可.如果仅仅是传参,无需任何操作,直接传地址即可,如 ...
- 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II
洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...
- Spring学习总结(5)——IOC注入方式总结
一.构造注入 在类被实例化的时候,它的构造方法被调用并且只能调用一次.所以它被用于类的初始化操作.<constructor-arg>是<bean>标签的子标签.通过其<v ...
- 使用JOTM实现分布式事务管理(多数据源)
使用spring和hibernate可以很方便的实现一个数据源的事务管理,但是如果需要同时对多个数据源进行事务控制,并且不想使用重量级容器提供的机制的话,可以使用JOTM达到目的. JOTM的配置十分 ...
- spring @configuration使用
http://yaobenzhang.blog.163.com/blog/static/2143951132014811105138824/
- js进阶 14 jquery的ajax有哪些函数和事件(多练)
js进阶 14 jquery的ajax有哪些函数和事件(多练) 一.总结 一句话总结:常用:load.ajax.post.get.getScript().getJSON().表单序列化,ajax事件这 ...
- javascript中if条件
1.布尔变量 true/false 2.数字非0.非NaN/0.NaN 3.对象非null/null.nudefined 4.字符串非空串/空串 if(!!str){ //do something } ...
- easy ui 验证
$('#IdentityCertificate').validatebox({required:true}); $('#memberName').validatebox({required:true} ...
- Project Euler 516 5-smooth totients (数论)
题目链接: https://projecteuler.net/problem=516 题目: \(5\)-smooth numbers are numbers whose largest prime ...