Normal Equation of Computing Parameters Analytically
Normal Equation
Note: [8:00 to 8:44 - The design matrix X (in the bottom right side of the slide) given in the example should have elements x with subscript 1 and superscripts varying from 1 to m because for all m training sets there are only 2 features x0 and x1. 12:56 - The X matrix is m by (n+1) and NOT n by n. ]
Gradient descent gives one way of minimizing J. Let’s discuss a second way of doing so, this time performing the minimization explicitly and without resorting to an iterative algorithm. In the "Normal Equation" method, we will minimize J by explicitly taking its derivatives with respect to the θj ’s, and setting them to zero. This allows us to find the optimum theta without iteration. The normal equation formula is given below:


There is no need to do feature scaling with the normal equation.
The following is a comparison of gradient descent and the normal equation:

With the normal equation, computing the inversion has complexity
So if we have a very large number of features, the normal equation will be slow. In practice, when n exceeds 10,000 it might be a good time to go from a normal solution to an iterative process.
Normal Equation Noninvertibility
When implementing the normal equation in octave we want to use the 'pinv' function rather than 'inv.' The 'pinv' function will give you a value of θ even if
is not invertible.
If
is noninvertible, the common causes might be having :
- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. m ≤ n). In this case, delete some features or use "regularization" (to be explained in a later lesson).
Solutions to the above problems include deleting a feature that is linearly dependent with another or deleting one or more features when there are too many features.
Normal Equation of Computing Parameters Analytically的更多相关文章
- Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...
- 5种方法推导Normal Equation
引言: Normal Equation 是最基础的最小二乘方法.在Andrew Ng的课程中给出了矩阵推到形式,本文将重点提供几种推导方式以便于全方位帮助Machine Learning用户学习. N ...
- coursera机器学习笔记-多元线性回归,normal equation
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- (三)用Normal Equation拟合Liner Regression模型
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...
- 【转】Derivation of the Normal Equation for linear regression
I was going through the Coursera "Machine Learning" course, and in the section on multivar ...
- 机器学习入门:Linear Regression与Normal Equation -2017年8月23日22:11:50
本文会讲到: (1)另一种线性回归方法:Normal Equation: (2)Gradient Descent与Normal Equation的优缺点: 前面我们通过Gradient Desce ...
- Normal Equation
一.Normal Equation 我们知道梯度下降在求解最优参数\(\theta\)过程中需要合适的\(\alpha\),并且需要进行多次迭代,那么有没有经过简单的数学计算就得到参数\(\theta ...
- CS229 3.用Normal Equation拟合Liner Regression模型
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...
- 正规方程 Normal Equation
正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/5103 ...
随机推荐
- Menu-actionBarMenu字体颜色修改
经常会遇到对menu字体颜色进行修改的情况,今天就遇到了一个.就是在action上有一个menu是黑色的,想要改成白色.方法如下 <style name="Email.Theme&qu ...
- 28.Node.js 函数和匿名函数
转自:http://www.runoob.com/nodejs/nodejs-module-system.html 在JavaScript中,一个函数可以作为另一个函数的参数.我们可以先定义一个函数, ...
- iTOP-4412 nfs文件系统启动
kernel command line type: 普通文件系统(本地)启动:root=/dev/mmcblk0p2 rootfstype=ext4 init=/linuxrc console=tty ...
- Git提交.net项目的小问题
今天早上写了点关于asp.net core授权的东西,输入git add .的时候出现的报错 $ git add .error: open(".vs/DOTNETAuthorization/ ...
- 免费的EmBitz可替代Keil MDK开发STM32、NXP项目
一.背景 由于使用之前开发STM32是基于Keil MDK编译环境开发的,由于该软件是收费的,想用个免费开源的软件来替代Keil,EmBitz编译器是免费的,可以完全替代开发.下载程序支持J-Link ...
- tomcat的一些简单配置
一.管理tomcatusernamepassword conf文件夹下,tomcat-users.xml <span style="font-size:24px;">& ...
- 使用 Go 语言开发大型 MMORPG 游戏服务器怎么样?(非常稳定、捕获所有异常、非常适合从头开始,但大公司已经有现成的C++框架、所以不会使用)
使用 Go 语言开发大型 MMORPG 游戏服务器怎么样?和C Socket服务器比起来有什么优劣?可行性怎么样? 从2013年起,经朋友推荐开始用Golang编写游戏登陆服务器, 配合C++做第三方 ...
- log4j配置文件及nutch中的日志配置 分类: B1_JAVA 2015-02-17 10:58 483人阅读 评论(0) 收藏
吐槽几句,log4j的坑啊.... (1)CLASSPATH中不能有多个log4j的版本本,否则有有奇形怪状的NoSuchMethod, NoSuchFiled, NoClassDefineFound ...
- mysql 表的timestamp为自动添加
新设计表时可以执行语句: `update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP C ...
- ZOJ 2723 Semi-Prime ||ZOJ 2060 Fibonacci Again 水水水!
两题水题: 1.如果一个数能被分解为两个素数的乘积,则称为Semi-Prime,给你一个数,让你判断是不是Semi-Prime数. 2.定义F(0) = 7, F(1) = 11, F(n) = F( ...