Normal Equation of Computing Parameters Analytically
Normal Equation
Note: [8:00 to 8:44 - The design matrix X (in the bottom right side of the slide) given in the example should have elements x with subscript 1 and superscripts varying from 1 to m because for all m training sets there are only 2 features x0 and x1. 12:56 - The X matrix is m by (n+1) and NOT n by n. ]
Gradient descent gives one way of minimizing J. Let’s discuss a second way of doing so, this time performing the minimization explicitly and without resorting to an iterative algorithm. In the "Normal Equation" method, we will minimize J by explicitly taking its derivatives with respect to the θj ’s, and setting them to zero. This allows us to find the optimum theta without iteration. The normal equation formula is given below:


There is no need to do feature scaling with the normal equation.
The following is a comparison of gradient descent and the normal equation:

With the normal equation, computing the inversion has complexity
So if we have a very large number of features, the normal equation will be slow. In practice, when n exceeds 10,000 it might be a good time to go from a normal solution to an iterative process.
Normal Equation Noninvertibility
When implementing the normal equation in octave we want to use the 'pinv' function rather than 'inv.' The 'pinv' function will give you a value of θ even if
is not invertible.
If
is noninvertible, the common causes might be having :
- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. m ≤ n). In this case, delete some features or use "regularization" (to be explained in a later lesson).
Solutions to the above problems include deleting a feature that is linearly dependent with another or deleting one or more features when there are too many features.
Normal Equation of Computing Parameters Analytically的更多相关文章
- Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...
- 5种方法推导Normal Equation
引言: Normal Equation 是最基础的最小二乘方法.在Andrew Ng的课程中给出了矩阵推到形式,本文将重点提供几种推导方式以便于全方位帮助Machine Learning用户学习. N ...
- coursera机器学习笔记-多元线性回归,normal equation
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- (三)用Normal Equation拟合Liner Regression模型
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...
- 【转】Derivation of the Normal Equation for linear regression
I was going through the Coursera "Machine Learning" course, and in the section on multivar ...
- 机器学习入门:Linear Regression与Normal Equation -2017年8月23日22:11:50
本文会讲到: (1)另一种线性回归方法:Normal Equation: (2)Gradient Descent与Normal Equation的优缺点: 前面我们通过Gradient Desce ...
- Normal Equation
一.Normal Equation 我们知道梯度下降在求解最优参数\(\theta\)过程中需要合适的\(\alpha\),并且需要进行多次迭代,那么有没有经过简单的数学计算就得到参数\(\theta ...
- CS229 3.用Normal Equation拟合Liner Regression模型
继续考虑Liner Regression的问题,把它写成如下的矩阵形式,然后即可得到θ的Normal Equation. Normal Equation: θ=(XTX)-1XTy 当X可逆时,(XT ...
- 正规方程 Normal Equation
正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/5103 ...
随机推荐
- 设计模式之禅——模板方法模式&钩子方法
** **板方法模式的定义: 定义一个操作的算法的框架,而将一些步骤延迟到子类中.使得子类可以不改变一个算法的框架即可重定义该算法的某些特定步骤. 例子:做一个简单的悍马车的模型 见UML图 一个抽象 ...
- [AngularFire] Resolve snapshotChanges doesn't emit value when data is empty
Updated to AngularFire2 v5.0. One important change is that you need to call .snapshotChanges() or .v ...
- Leetcode:signal_number_ii
一. 题目 给一个数组,当中仅仅有一个数出现一次.其它的数都出现3次,请找出这个数.要求时间复杂度是O(n).空间复杂度O(1). 二. 分析 第一次遇见这种题,真心没思路-.前面的s ...
- 洛谷P1143 进制转换
题目描述 请你编一程序实现两种不同进制之间的数据转换. 输入输出格式 输入格式: 输入数据共有三行,第一行是一个正整数,表示需要转换的数的进制n(2≤n≤16),第二行是一个n进制数,若n>10 ...
- 1.18 Python基础知识 - Python内置函数
官方地址:https://docs.python.org/3.5/library/functions.html abs(x): 返回数字的绝对值 all(iterable): 如果迭代器的所有元素都为 ...
- Python中对于GIL全局解释器锁的一点理解
GIL全局解释器锁 python最初开发时,开发人只考虑到了单核CPU的,为解决多线程运算之间的数据完整性和状态同步选择了加锁的方式.即GIL锁. 而目前的CPU都有多个核心,在运行python的某个 ...
- C# Bartender模板打印 条码,二维码, 文字, 及操作RFID标签等。
1.在之前写的一篇文章中, 有讲到如何利用ZPL命令去操作打印里, 后面发现通过模板的方式会更加方便快捷, 既不用去掌握ZPL的实现细节, 就可以轻松的调用实现打印的功能. 解决方案: 1.网络下载 ...
- [JWT] JWT with HS256
The advantages of JWT over traditional session based validation is: it effectively removing all auth ...
- theme-windowAnimationStyle 动画设置
对于windowAnimationStyle 的引用,目前自己发现的有两处 1.就是直接在Theme 中引用的,如下 <style name="Theme.Funui" pa ...
- 2.1 Vue组件
Vue组件 全局组件和局部组件 父子组件通讯-数据传递 父->子:通过Props传递 子->父:不允许,但vue通过子组件触发Emit来提交给子组件进行触发 Slot import Cou ...