【BZOJ 1051】[HAOI2006]受欢迎的牛
【链接】 我是链接,点我呀:)
【题意】
在这里输入题意
【题解】
Tarjan算法强连通缩点 。
最后出度为0的点。
如果只有一个。
那么这个“大点”所包含的点的个数就是答案了。
【代码】
/*
n个点,m条有向边.
把有向图G的环进行缩点;
缩完之后的图存在vector <int> g[N]里面;
n变为缩完点之后的图的节点的个数了。
*/
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define ri(x) scanf("%d",&x)
#define rl(x) scanf("%lld",&x)
#define rs(x) scanf("%s",x)
#define oi(x) printf("%d",x)
#define ol(x) printf("%lld",x)
#define oc putchar(' ')
#define os(x) printf(x)
#define all(x) x.begin(),x.end()
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 1e4;//节点个数
vector <int> G[N+10],g[N+10];
int n,m,tot = 0,top = 0,dfn[N+10],low[N+10],z[N+10],totn,in[N+10];
int bh[N+10];
void dfs(int x){
dfn[x] = low[x] = ++ tot;
z[++top] = x;
in[x] = 1;
int len = G[x].size();
rep1(i,0,len-1){
int y = G[x][i];
if (!dfn[y]){
dfs(y);
low[x] = min(low[x],low[y]);
}else
if (in[y] && dfn[y]<low[x]){
low[x] = dfn[y];
}
}
if (low[x]==dfn[x]){
int v = 0;
totn++;
while (v!=x){
v = z[top];
in[v] = 0;
bh[v] = totn;
top--;
}
}
}
bool bo[N+10];
int main(){
#ifdef LOCAL_DEFINE
freopen("rush_in.txt", "r", stdin);
#endif
ms(dfn,0);
ms(in,0);
tot = 0,totn = 0;
ri(n),ri(m);
rep1(i,1,n) G[i].clear(),g[i].clear();
rep1(i,1,m){
int x,y;
ri(x),ri(y);
G[x].pb(y);
}
rep1(i,1,n)
if (dfn[i]==0)
dfs(i);
rep1(i,1,n){
int len = G[i].size();
int xx = bh[i];
rep1(j,0,len-1){
int y = G[i][j];
int yy = bh[y];
if (xx!=yy)
g[xx].pb(yy);
}
}
int cnt = 0,idx = -1;
for (int i = 1;i <= totn;i++)
if (g[i].empty()){
cnt++;
idx = i;
}
if (cnt!=1){
oi(0);
puts("");
}else{
int ans = 0;
for (int i=1;i <= n;i++)
if (bh[i]==idx){
ans++;
}
oi(ans);
puts("");
}
return 0;
}
【BZOJ 1051】[HAOI2006]受欢迎的牛的更多相关文章
- BZOJ 1051: [HAOI2006]受欢迎的牛 缩点
1051: [HAOI2006]受欢迎的牛 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1051: [HAOI2006]受欢迎的牛 tarjan缩点
1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2092 Solved: 1096[Submit][Sta ...
- BZOJ 1051: [HAOI2006]受欢迎的牛( tarjan )
tarjan缩点后, 有且仅有一个出度为0的强连通分量即answer, 否则无解 ----------------------------------------------------------- ...
- BZOJ 1051: [HAOI2006]受欢迎的牛(SCC)
1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 8172 Solved: 4470[Submit][Sta ...
- 洛谷 P2341 BZOJ 1051 [HAOI2006]受欢迎的牛
题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C ...
- BZOJ 1051: [HAOI2006]受欢迎的牛
Description 一个有向图,求所以能被别的点到达的点的个数. Sol Tarjan + 强连通分量 + 缩点. 缩点以后找强连通分量,缩点,然后当图有且仅有1个出度为1的点时,有答案. Cod ...
- BZOJ 1051: [HAOI2006]受欢迎的牛 强连通缩点
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1051 题解: 强连通缩点得到DAG图,将图转置一下,对入度为零的点跑dfs看看能不能访问 ...
- bzoj 1051: [HAOI2006]受欢迎的牛 (Tarjan 缩点)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1051 思路: 首先用Tarjan把环缩成点,要想收到所有人的欢迎,那么这个点的出度必为0,且 ...
- bzoj 1051 [HAOI2006]受欢迎的牛(tarjan缩点)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1051 题解:缩点之后判断出度为0的有几个,只有一个那么输出那个强连通块的点数,否者 ...
- 【BZOJ 1051】 1051: [HAOI2006]受欢迎的牛 (SCC)
1051: [HAOI2006]受欢迎的牛 Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如 ...
随机推荐
- POJ 3320 Jessica's Reading Problem (尺取法,时间复杂度O(n logn))
题目: 解法:定义左索引和右索引 1.先让右索引往右移,直到得到所有知识点为止: 2.然后让左索引向右移,直到刚刚能够得到所有知识点: 3.用右索引减去左索引更新答案,因为这是满足要求的子串. 4.不 ...
- img标签IE下有边距——2017/7/21
设置css 在全局变量的是和给img标签设置 img{ border:0;} 1,img{float:left}2,img{display:block}
- ZBrush功能特性之变形
使用ZBrush内置的变形功能可以让用户对三维网格轻松应用扭曲.拉伸.弯曲及其他各种变化.在ZBrush当中,有超过20种的强大变形类型,可以应用于任何轴向.用户只需单击几次即可创造出高级形状,如图所 ...
- 关于深度残差网络(Deep residual network, ResNet)
题外话: From <白话深度学习与TensorFlow> 深度残差网络: 深度残差网络的设计就是为了克服这种由于网络深度加深而产生的学习效率变低,准确率无法有效提升的问题(也称为网络退化 ...
- BNUOJ 36005 Chemical Reaction
Chemical Reaction Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on OpenJudge. ...
- 如何检查 Android 应用的内存使用情况
Android是为移动设备而设计的,所以应该关注应用的内存使用情况.尽管Android的Dalvik虚拟机会定期执行垃圾回收操作,但这也不意味着就可以忽视应用在何时何处进行内存分配和释放.为了提供良好 ...
- 精品JS代码收藏大全
1. oncontextmenu="window.event.returnvalue=false" 将彻底屏蔽鼠标右键 <table border oncontextmenu ...
- linux下创建带password的用户
一直在做实验室linuxserver的账号管理系统,现阶段是用户申请后我这边收到邮件,然后手动创建,这个略显麻烦,打算全然做成自己主动化的.用户申请后,我直接在管理界面点击批准就可以创建用户,同一时候 ...
- SQLite -- 嵌入式关系型数据库
SQLite -- 嵌入式关系型数据库 1.SQLite的数据类型:Typelessness(无类型) 1,能够保存不论什么类型的数据到表的随意列中 2.支持常见的类型如: NULL, VARCHAR ...
- Android configChanges使用方法
1. 在manifest文件里使用activity的默认属性.横屏竖屏时,惠重复调用onDestory和onCreate 造成不必要的开销.Android默认如此应该是为了适配不同的xml布局 ...