紫书 例题 10-7 UVa 10820 (欧拉函数)
这道题要找二元组(x, y) 满足1 <= x, y <= n 且x与y互素
那么我就可以假设x < y, 设这时答案为f(n)
那么答案就为2 * f(n) +1(x与y反过来就乘2,加上(1,1))
那么f(n)可以用欧拉函数求
显然f(n) = phi(2) + phi(3) + ……+phi(n)
#include<cstdio>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 51234;
int euler[MAXN], ans[MAXN], n;
void init()
{
REP(i, 1, MAXN) euler[i] = i;
REP(i, 2, MAXN)
if(euler[i] == i)
for(int j = i; j < MAXN; j += i)
euler[j] = euler[j] / i * (i - 1);
REP(i, 2, MAXN) ans[i] = ans[i-1] + euler[i];
}
int main()
{
init();
while(~scanf("%d", &n) && n)
printf("%d\n", ans[n] * 2 + 1);
return 0;
}
紫书 例题 10-7 UVa 10820 (欧拉函数)的更多相关文章
- UVA 10820 欧拉函数模板题
这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...
- UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)
题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...
- UVa 10837 (欧拉函数 搜索) A Research Problem
发现自己搜索真的很弱,也许做题太少了吧.代码大部分是参考别人的,=_=|| 题意: 给出一个phi(n),求最小的n 分析: 回顾一下欧拉函数的公式:,注意这里的Pi是互不相同的素数,所以后面搜索的时 ...
- UVa 11440 (欧拉函数) Help Tomisu
题意: 给出N和M,统计区间x ∈ [2, N!],x满足所有素因子都大于M的x的个数. 分析: 首先将问题转化一下,所有素因子都大于M 等价于 这个数与M!互素 对于k大于M!,k与M!互素等价于 ...
- UVA 11426 (欧拉函数&&递推)
题意:给你一个数N,求N以内和N的最大公约数的和 解题思路: 一开始直接想暴力做,4000000的数据量肯定超时.之后学习了一些新的操作. 题目中所要我们求的是N内gcd之和,设s[n]=s[n-1] ...
- UVA - 11426 欧拉函数(欧拉函数表)
题意: 给一个数 N ,求 N 范围内所有任意两个数的最大公约数的和. 思路: f 数组存的是第 n 项的 1~n-1 与 n 的gcd的和,sum数组存的是 f 数组的前缀和. sum[n]=f[1 ...
- 紫书 习题 10-18 UVa 10837 (欧拉函数变形)
这道题很巧妙,要把式子变一下 phi(n) = n * (1 - 1 / p1) * (1 - 1 / p2)--(1 - 1 / pr) = n * ((p1-1) / p1) * ((p1-2) ...
- Trees in a Wood. UVA 10214 欧拉函数或者容斥定理 给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。
/** 题目:Trees in a Wood. UVA 10214 链接:https://vjudge.net/problem/UVA-10214 题意:给定a,b求 |x|<=a, |y|&l ...
- GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导
Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...
- Trees in a Wood UVA - 10214 欧拉函数模板
太坑惹,,,没用longlong各种WA #include <iostream> #include <string.h> #include <cstdio> #in ...
随机推荐
- (转载) 使用DrawerLayout和NavigationView从右侧出现
使用DrawerLayout和NavigationView从右侧出现 2016-07-21 17:53 957人阅读 评论(0) 收藏 举报 分类: android(9) 版权声明:本文为博主原创 ...
- Linux与Windows信息交互快捷方法
要把windows上的D盘挂载的Linux上,首先要知道windows的用户名和密码 假设用户名是administrator,密码是123456 首先,在linux上创建一个挂载的目标目录 mkdir ...
- 【原创】apache虚拟主机配置
1.取消httpd.conf中以下行的注释 Include conf/extra/httpd-vhosts.conf 2.增加虚拟主机的目录,代表该目录作为一个网站的虚拟目录,配置权限,允许访问: & ...
- 定时清理clientmqueue目录垃圾文件防止占满磁盘空间
RedHat/CentOS 5.8 默认就有sendmail,而6.4默认没有. 手动清理方法: find /var/spool/clientmqueue/ -type f|xargs rm -f ...
- RocketMQ学习笔记(8)----RocketMQ的Producer API简介
在RocketMQ中提供了三种发送消息的模式: 1.NormalProducer(普通) 2.OrderProducer(顺序) 3.TransactionProducer(事务) 下面来介绍一下pr ...
- requests 后续1
发送带数据post请求 import requests # 发送post请求 data = { } response = requests.post(url, data=data) # 内网 需要 认 ...
- String值传递剖析
转载自 http://www.iteye.com/topic/412531 提要:本文从实现原理的角度上阐述和剖析了:在Java语言中,以String作为类型的变量在作为方法参数时所表现出的“非对象” ...
- BZOJ 3689 异或之 (可持久化01Trie+堆)
题目大意:给你一个序列,求出第$K$大的两两异或值 先建出来可持久化$01Trie$ 用一个$set$/堆存结构体,存某个异或对$<i,j>$的第二关键字$j$,以及$ai\;xor\;a ...
- RHEL8.0-beta-1.ISO
https://pan.baidu.com/s/1Yh_xuz39xGRrCtGtwhuqQg RHEL-8.0-beta-1-x86_64-dvd.iso 文件名: E:\rhel-8. ...
- 紫书 例题 11-5 UVa 10048 (Floyd求最大权值最小的路径)
这道题是Floyd的变形 改成d[i][j] = min(d[i][j], max(d[i][k], d[k][j]))就好了. #include<cstdio> #include< ...