http://poj.org/problem?id=1470

Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 20830   Accepted: 6617

Description

Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices 
vertex:(nr_of_successors) successor1 successor2 ... successorn 
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
nr_of_pairs 
(u v) (x y) ...

The input file contents several data sets (at least one). 
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
For example, for the following tree: 

Sample Input

5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)

Sample Output

2:1
5:5

Hint

Huge input, scanf is recommended.

Source

 
LCA ,,(多组数据、)
 #include <algorithm>
#include <cstring>
#include <cstdio> using namespace std; const int N(2e5+);
int n,m,cnt;
int ans[N]; int head[N],sumedge;
struct Edge
{
int v,next;
Edge(int v=,int next=):
v(v),next(next){}
}edge[N<<];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
} int son[N],size[N],deep[N],top[N],dad[N],fa[N];
void DFS(int u,int fa,int deepth)
{
size[u]=;
dad[u]=fa;
deep[u]=deepth;
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(dad[u]==v) continue;
DFS(v,u,deepth+);
size[u]+=size[v];
if(size[son[u]]<size[v]) son[u]=v;
}
}
void DFS_(int u,int Top)
{
top[u]=Top;
if(son[u]) DFS_(son[u],Top);
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(dad[u]!=v&&son[u]!=v) DFS_(v,v);
}
}
int LCA(int x,int y)
{
for(;top[x]!=top[y];x=dad[top[x]])
if(deep[top[x]]<deep[top[y]]) swap(x,y);
return deep[x]<deep[y]?x:y;
} inline void init()
{
sumedge=;
memset(fa,,sizeof(fa));
memset(dad,,sizeof(dad));
memset(top,,sizeof(top));
memset(son,,sizeof(son));
memset(ans,,sizeof(ans));
memset(size,,sizeof(size));
memset(head,,sizeof(head));
memset(edge,,sizeof(edge));
memset(deep,,sizeof(deep));
} inline void read(int &x)
{
x=;register char ch=getchar();
for(;ch<''||ch>'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
} int main()
{
for(int t;~scanf("%d",&t);init())
{
n=t;
for(int u,v,nn;t--;)
{
read(u);
read(nn);
for(int i=;i<=nn;i++)
{
read(v);
fa[v]=u;
ins(u,v);
ins(v,u);
}
}
int root=;
for(;root<=n;root++)
if(!fa[root]) break;
DFS(root,,);
DFS_(root,root);
read(m);
for(int u,v;m--;)
{
read(u),read(v);
ans[LCA(u,v)]++;
}
for(int i=;i<=n;i++)
if(ans[i]) printf("%d:%d\n",i,ans[i]);
}
return ;
}

POJ——T 1470 Closest Common Ancestors的更多相关文章

  1. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  2. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  3. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

  4. POJ 1470 Closest Common Ancestors

    传送门 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 17306   Ac ...

  5. POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13370   Accept ...

  6. poj——1470 Closest Common Ancestors

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 20804   Accept ...

  7. poj 1470 Closest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...

  8. POJ 1470 Closest Common Ancestors【近期公共祖先LCA】

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u013912596/article/details/35311489 题目链接:http://poj ...

  9. POJ 1470 Closest Common Ancestors【LCA Tarjan】

    题目链接: http://poj.org/problem?id=1470 题意: 给定若干有向边,构成有根数,给定若干查询,求每个查询的结点的LCA出现次数. 分析: 还是很裸的tarjan的LCA. ...

随机推荐

  1. 利用SQL索引提高查询速度

    1.合理使用索引 索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率.现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构. 索引的使用要恰到好处,其使用原则如下: 在经常进行连接 ...

  2. eclipse01

    http://blog.csdn.net/luman1991/article/category/6354903

  3. Oracle12C查询自建用户(非系统自带)

      select username from dba_users where INHERITED='NO';

  4. 静态构造函数c# 静态块java initallize oc

    静态构造函数c# 静态块java initallize oc 先看一道常见题目,以下代码的执行结果是什么? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 ...

  5. 数字游戏(string的sort的应用)

    题目描述 牛牛举办了一场数字游戏,有n个玩家参加这个游戏,游戏开始每个玩家选定一个数,然后将这个数写在纸上(十进制数,无前缀零),然后接下来对于每一个数字将其数位按照非递减顺序排列,得到新的数,新数的 ...

  6. c/s结构的自动化——pyautogui

    环境:Python 3.5.3 pip install pyautogui -i http://pypi.douban.com/simple --trusted-host pypi.douban.co ...

  7. JavaScript函数练习

    1. 判断一个数是否是素数 function isSushu (n) { n = n || 0; var isSu = true; for (var i = 2; i <= Math.sqrt( ...

  8. 越努力越幸运--3-日常bug修复

    提供一个so给PYTHON调用,后端发现业务处理流程不是按照方法传入的参数来跑. 查看c的代码,看了客户端没看出什么问题,查看服务端为什么会出现这样的情况,有些字段明显不是入参带过来的,跟踪服务端解析 ...

  9. Java基础学习总结(2)——接口

    一.接口的概念 JAVA是只支持单继承的,但现实之中存在多重继承这种现象,如"金丝猴是一种动物",金丝猴从动物这个类继承,同时"金丝猴是一种值钱的东西",金丝猴 ...

  10. CSDN 轻松周赛赛题:能否被8整除

    轻松周赛赛题:能否被8整除 题目详情 给定一个非负整数,问能否重排它的全部数字,使得重排后的数能被8整除. 输入格式: 多组数据,每组数据是一个非负整数.非负整数的位数不超过10000位. 输出格式 ...