[Example of Sklearn] - 分类对比
refrence :http://cloga.info/python/2014/02/07/classify_use_Sklearn/
加载数据集
这里我使用pandas来加载数据集,数据集采用kaggle的titanic的数据集,下载train.csv。
import pandas as pd
df = pd.read_csv('train.csv')
df = df.fillna(0) #将缺失值都替换为0
df.head()
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22 | 1 | 0 | A/5 21171 | 7.2500 | 0 | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26 | 0 | 0 | STON/O2. 3101282 | 7.9250 | 0 | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35 | 0 | 0 | 373450 | 8.0500 | 0 | S |
5 rows × 12 columns
len(df)
891
可以看到训练集中共有891条记录,有12个列(其中一列Survived是目标分类)。将数据集分为特征集和目标分类集,两个DataFrame。
exc_cols = [u'PassengerId', u'Survived', u'Name']
cols = [c for c in df.columns if c not in exc_cols]
x = df.ix[:,cols]
y = df['Survived'].values
由于Sklearn为了效率,接受的特征数据类型是dtype=np.float32以便获得最佳的算法效率。因此,对于类别类型的特征就需要转化为向量。Sklearn 提供了DictVectorizer类将类别的特征转化为向量。DictVectorizer接受记录的形式为字典的列表。因此需要用pandas的to_dict方法转 换DataFrame。
from sklearn.feature_extraction import DictVectorizer
v = DictVectorizer()
x = v.fit_transform(x.to_dict(outtype='records')).toarray()
让我们比较一下同一个实例的原始信息及向量化后的结果。
print 'Vectorized:', x[10]
print 'Unvectorized:', v.inverse_transform(x[10])
Vectorized: [ 4. 0. 0. ..., 0. 0. 0.]
Unvectorized: [{'Fare': 16.699999999999999, 'Name=Sandstrom, Miss. Marguerite Rut': 1.0, 'Embarked=S': 1.0, 'Age': 4.0, 'Sex=female': 1.0, 'Parch': 1.0, 'Pclass': 3.0, 'Ticket=PP 9549': 1.0, 'Cabin=G6': 1.0, 'SibSp': 1.0, 'PassengerId': 11.0}]
如果分类的标签也是字符的,那么就还需要用LabelEncoder方法进行转化。
将数据集分成训练集和测试集。
from sklearn.cross_validation import train_test_split
data_train, data_test, target_train, target_test = train_test_split(x, y)
len(data_train)
668
len(data_test)
223
默认是以数据集的25%作为测试集。到这里为止,用于训练和测试的数据集都已经准备好了。
用Sklearn做判别分析
Sklearn训练模型的基本流程
Model = EstimatorObject()
Model.fit(dataset.data, dataset.target)
dataset.data = dataset
dataset.target = labels
Model.predict(dataset.data)
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm
import datetime
estimators = {}
estimators['bayes'] = GaussianNB()
estimators['tree'] = tree.DecisionTreeClassifier()
estimators['forest_100'] = RandomForestClassifier(n_estimators = 100)
estimators['forest_10'] = RandomForestClassifier(n_estimators = 10)
estimators['svm_c_rbf'] = svm.SVC()
estimators['svm_c_linear'] = svm.SVC(kernel='linear')
estimators['svm_linear'] = svm.LinearSVC()
estimators['svm_nusvc'] = svm.NuSVC()
首先是定义各个model所用的算法。
for k in estimators.keys():
start_time = datetime.datetime.now()
print '----%s----' % k
estimators[k] = estimators[k].fit(data_train, target_train)
pred = estimators[k].predict(data_test)
print("%s Score: %0.2f" % (k, estimators[k].score(data_test, target_test)))
scores = cross_validation.cross_val_score(estimators[k], data_test, target_test, cv=5)
print("%s Cross Avg. Score: %0.2f (+/- %0.2f)" % (k, scores.mean(), scores.std() * 2))
end_time = datetime.datetime.now()
time_spend = end_time - start_time
print("%s Time: %0.2f" % (k, time_spend.total_seconds()))
----svm_c_rbf----
svm_c_rbf Score: 0.63
svm_c_rbf Cross Avg. Score: 0.54 (+/- 0.18)
svm_c_rbf Time: 1.67
----tree----
tree Score: 0.81
tree Cross Avg. Score: 0.75 (+/- 0.09)
tree Time: 0.90
----forest_10----
forest_10 Score: 0.83
forest_10 Cross Avg. Score: 0.80 (+/- 0.10)
forest_10 Time: 0.56
----forest_100----
forest_100 Score: 0.84
forest_100 Cross Avg. Score: 0.80 (+/- 0.14)
forest_100 Time: 5.38
----svm_linear----
svm_linear Score: 0.74
svm_linear Cross Avg. Score: 0.65 (+/- 0.18)
svm_linear Time: 0.15
----svm_nusvc----
svm_nusvc Score: 0.63
svm_nusvc Cross Avg. Score: 0.55 (+/- 0.21)
svm_nusvc Time: 1.62
----bayes----
bayes Score: 0.44
bayes Cross Avg. Score: 0.47 (+/- 0.07)
bayes Time: 0.16
----svm_c_linear----
svm_c_linear Score: 0.83
svm_c_linear Cross Avg. Score: 0.79 (+/- 0.14)
svm_c_linear Time: 465.57
这里通过算法的score方法及cross_validation来计算预测的准确性。
可以看到准确性比较高的算法需要的时间也会增加。性价比较高的算法是随机森林。 让我们用kaggle给出的test.csv的数据集测试一下。
test = pd.read_csv('test.csv')
test = test.fillna(0)
test_d = test.to_dict(outtype='records')
test_vec = v.transform(test_d).toarray()
这里需要注意的是test的数据也需要经过同样的DictVectorizer转换。
for k in estimators.keys():
estimators[k] = estimators[k].fit(x, y)
pred = estimators[k].predict(test_vec)
test['Survived'] = pred
test.to_csv(k + '.csv', cols=['Survived', 'PassengerId'], index=False)
好了,向Kaggle提交你的结果吧~
[Example of Sklearn] - 分类对比的更多相关文章
- Sklearn分类树在合成数集上的表现
小伙伴们大家好~o( ̄▽ ̄)ブ,今天我们开始来看一下Sklearn分类树的表现,我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) S ...
- sklearn分类
近期的事务与sklearn有关,且主要用到了分类.在此做一点笔记 进行分类大概涉及三个知识点: 一. 分类器 二.特征选择 三.模型选择 一.分类器(Classification) 实例一:plot_ ...
- python + sklearn ︱分类效果评估——acc、recall、F1、ROC、回归、距离
之前提到过聚类之后,聚类质量的评价: 聚类︱python实现 六大 分群质量评估指标(兰德系数.互信息.轮廓系数) R语言相关分类效果评估: R语言︱分类器的性能表现评价(混淆矩阵,准确率,召回率,F ...
- Python sklearn 分类效果评估
https://blog.csdn.net/sinat_26917383/article/details/75199996
- sklearn调用分类算法的评价指标
sklearn分类算法的评价指标调用#二分类问题的算法评价指标import numpy as npimport matplotlib.pyplot as pltimport pandas as pdf ...
- 特征选取1-from sklearn.feature_selection import SelectKBest
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
- 基于Text-CNN模型的中文文本分类实战
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
- SVM算法
本文主要介绍支持向量机理论推导及其工程应用. 1 基本介绍 支持向量机算法是一个有效的分类算法,可用于分类.回归等任务,在传统的机器学习任务中,通过人工构造.选择特征,然后使用支持向量机作为训练器,可 ...
随机推荐
- 10.11 android输入系统_补充知识_activity_window_decor_view关系
android里:1个application, 有1个或多个activity(比如支付宝有:首页.财富.口碑.朋友.我的,这些就是activity)1个activity, 有1个window(每个ac ...
- [TypeScript] Creating a Class in TypeScript
Typescript classes make traditional object oriented programming easier to read and write. In this le ...
- 如何使用google地图的api(整理)
如何使用google地图的api(整理) 一.总结 一句话总结:直接用script标签引google地图api即可. 1.如何使用google地图的api? 页面引用javascript文件<s ...
- 度量空间(metric space)
一个度量空间(metric space)由一个有序对(ordered pair)(M,d) 表示,其中 M 是一种集合,d 是定义在 M 上的一种度量,是如下的一种函数映射: d:M×M→R 且对于任 ...
- linux下查看动态链接库依赖关系的命令 x86: ldd *.so arm: arm-linux-readelf -d *.so 实际例子: 以项目中用到的库librtsp.so分析: lijun@ubuntu:~/workspace$ arm-hisiv100nptl-linux-ld -d librtsp.so arm-hisiv100nptl-linux-ld:
linux下查看动态链接库依赖关系的命令 x86:ldd *.so arm:arm-linux-readelf -d *.so 实际例子:以项目中用到的库librtsp.so分析:l ...
- 13、虚拟驱动vivi.c注册过程分析及怎么写V4L2驱动及启动过程
UVC设备也是一个usb设备,在uvc_driver.c中的init函数会调用usb_register注册,根据id_table发送可支持的设备后调用probe函数,其会去uvc_register_c ...
- 6、linux中同步、互斥、阻塞(原子操作、信号量、阻塞)
1. 原子操作原子操作指的是在执行过程中不会被别的代码路径所中断的操作.常用原子操作函数举例:atomic_t v = ATOMIC_INIT(0); //定义原子变量v并初始化为0atomi ...
- 嵌入式/X86下linux系统死机及内存优化
一. CPU 过高或死锁导致系统卡死 1. CPU占用过高 (1)开线程太多导致CPU占用过高,系统卡死 解决:优化应用层业务逻辑,有些业务不必开线程就不开 (2)频繁清缓存导致读spi-flash ...
- 2020发布 .NET 5 下一代全平台 .Net 框架
[翻译] 正式宣布 .NET 5 2019-05-07 01:18 by Rwing, 16515 阅读, 79 评论, 收藏, 编辑 原文: Introducing .NET 5 今天,我们宣布 . ...
- POJ 3628 Bookshelf 2 (01背包)
Bookshelf 2 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7496 Accepted: 3451 Descr ...