在project euler 的第\(10\)题的 \(forum\) 中 Lucy Hedgehog 提到的这种方法。



### 求 $n$ 以内素数个数以及求 $n$ 以内素数和的算法。
### 定义$S(v,p)$为$2$ 到 $v$ 所有整数中,在普通筛法中外层循环筛完 $p$ 时仍然幸存的数的和。因此这些数要不本身是素数,要不其最小的素因子也大于 $p$ 。因此我们需要求的是 $S(n,\lfloor\sqrt n\rfloor)$。
### 为了计算 $S(v,p)$,先考虑几个特殊情况。


### $1.$ $p\le1$ 。此时所有数都还没有被筛掉,所以 $S(v,p)=\sum_{i=2}^{v}i=\frac{(2+v)(v-1)}{2}$。
### $2.$ $p$ 不是素数。因为筛法中 $p$ 早已被别的数筛掉,所以在这步什么都不会做,所以此时 $S(v,p)=S(v,p-1)$。
### $3.$ $p$ 是素数,但是 $v

### 现在考虑最后一种稍微麻烦些的情况:$p$ 是素数,且 $p^2\le v$。
### 此时,我们要用素数 $p$ 去筛掉剩下的那些数中 $p$ 的倍数。注意到现在还剩下的合数都没有小于 $p$ 的素因子。因此有:
### $S(v,p)=S(v,p-1)-\sum_{\substack{2\le k \le v,\\ p\mbox{为}k\mbox{的最小素因子}}}k$


### 后面那项中提取公共因子 $p$ ,有:
### $S(v,p)=S(v,p-1)-p\times\sum_{\substack{2\le k \le v,\\ p\mbox{为}k\mbox{的最小素因子}}}\frac{k}{p}$


### 因为 $p$ 整除 $k$ ,稍微变形一下,令 $t=\frac{k}{p}$,有:
### $S(v,p)=S(v,p-1)-p\times\sum_{\substack{2\le t \le \lfloor\frac{v}{p}\rfloor,\\ t\mbox{的最小素因子}\ge p}}t$


### 因为 $S$ 的定义s是(“这些数要不本身是素数,要不其最小的素因子也大于(注意!)$ p $”),此时 $p$ 后面这项可以用 $S$ 来表达。

\(S(v,p)=S(v,p-1)-p\times(S(\left\lfloor\frac{v}{p}\right\rfloor,p-1)-\{p-1\mbox{以内的所有素数和}\})\)



### 再用 $S$ 替换素数和得到最终表达式:
### $S(v,p)=S(v,p-1)-p\times(S(\left\lfloor\frac{v}{p}\right\rfloor,p-1)-S(p-1,p-1))$


### 我们最终的结果是 $S(n,\lfloor\sqrt n\rfloor)$。
### 这是求前 $n$ 的素数和的方法。
### 至于求前 $n$ 的素数个数的方法也差不多。
### 只需要把代码修改一下即可。

复杂度: \(O(n^{0.75})\)

C++代码:

#include<bits/stdc++.h>

using namespace std;
typedef long long ll; ll check(ll v, ll n, ll ndr, ll nv) {
return v >= ndr ? (n / v - 1) : (nv - v);
} // ll S[10000000];
// ll V[10000000];
ll primenum(ll n) // O(n^(3/4))
{
ll r = (ll)sqrt(n);
ll ndr = n / r;
assert(r*r <= n && (r+1)*(r+1) > n);
ll nv = r + ndr - 1;
std::vector<ll> S(nv+1);
std::vector<ll> V(nv+1);
for(ll i=0;i<r;i++) {
V[i] = n / (i+1);
}
for(ll i=r;i<nv;i++) {
V[i] = V[i-1] - 1;
}
for(ll i = 0;i<nv;i++) {
S[i] = V[i] - 1; //求素数个数
}
for(ll p=2;p<=r;p++) {
if(S[nv-p] > S[nv-p+1]) {
ll sp = S[nv-p+1]; // sum of primes smaller than p
ll p2 = p*p;
// std::cout << "p=" << p << '\n'; // p is prime
for(ll i=0;i<nv;i++) {
if(V[i] >= p2) {
S[i] -= 1LL * (S[check(V[i] / p, n, ndr, nv)] - sp);// //求素数个数
}
else break;
}
}
}
return S[0];
}
ll primesum(ll n) // O(n^(3/4))
{
ll r = (ll)sqrt(n);
ll ndr = n / r;
assert(r*r <= n && (r+1)*(r+1) > n);
ll nv = r + ndr - 1;
std::vector<ll> S(nv+1);
std::vector<ll> V(nv+1);
for(ll i=0;i<r;i++) {
V[i] = n / (i+1);
}
for(ll i=r;i<nv;i++) {
V[i] = V[i-1] - 1;
}
for(ll i = 0;i<nv;i++) {
S[i] = V[i] * ( V[i] + 1) / 2 - 1; //求素数和
}
for(ll p=2;p<=r;p++) { // p is prime
if(S[nv-p] > S[nv-p+1]) {
ll sp = S[nv-p+1]; // sum of primes smaller than p
ll p2 = p*p;
for(ll i=0;i<nv;i++) {
if(V[i] >= p2) {
S[i] -= p* (S[check(V[i] / p, n, ndr, nv)] - sp); //求素数和
}
else break;
}
}
}
return S[0];
}
int main(int argc, char const *argv[]) {
// std::cout << primesum(1e6) << '\n';
std::cout << primenum(1e10) << '\n';
std::cout << primesum(2e6) << '\n';
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
return 0;
}

Lucy_Hedgehog techniques的更多相关文章

  1. Web Application Penetration Testing Local File Inclusion (LFI) Testing Techniques

    Web Application Penetration Testing Local File Inclusion (LFI) Testing Techniques Jan 04, 2017, Vers ...

  2. 新书到手 TRANSACTION PROCESSING:CONCEPTS AND TECHNIQUES

    新书到手 TRANSACTION PROCESSING:CONCEPTS AND TECHNIQUES Jim Gray大神的著作 本文版权归作者所有,未经作者同意不得转载.

  3. MATLAB 图像处理——Contrast Enhancement Techniques

    Contrast Enhancement Techniques %调整图片尺寸imresizeimages{k} = imresize(images{k},[width*dim(1)/dim(2) w ...

  4. Looping Techniques

    [Looping Techniques] 1.When looping through dictionaries, the key and corresponding value can be ret ...

  5. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

  6. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  7. Beginners Guide To Learn Dimension Reduction Techniques

    Beginners Guide To Learn Dimension Reduction Techniques Introduction Brevity is the soul of wit This ...

  8. [翻译]比较ADO.NET中的不同数据访问技术(Performance Comparison:Data Access Techniques)

    Performance Comparison: Data Access Techniques Priya DhawanMicrosoft Developer Network January 2002 ...

  9. 小白日记45:kali渗透测试之Web渗透-SqlMap自动注入(三)-sqlmap参数详解-Optimization,Injection,Detection,Techniques,Fingerprint

    sqlmap自动注入 Optimization [优化性能参数,可提高效率] -o:指定前三个参数(--predict-output.--keep-alive.--null-connection) - ...

随机推荐

  1. Conservative GC (Part one)

    目录 保守式GC 不明确的根 指针和非指针的区别 貌似指针的非指针 不明确数据结构 优点 准确式GC 正确的根 打标签 不把寄存器和栈等当做根 优点 缺点 间接引用 经由句柄引用对象 优缺点 保守式G ...

  2. python程序转exe程序之一——cx_Freeze

    原始网页 : http://keliang.blog.51cto.com/3359430/661884 本人用的64位系统,一开始装了32位的cx_freeze,结果貌似无法自动找到本地的python ...

  3. CODEVS——T 1404 字符串匹配

    http://codevs.cn/problem/1404/ 时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master 题解  查看运行结果     题目描述 Desc ...

  4. DB2物化视图(Materialized Query Tables, MQT)

    DB2的物化视图MQT是基于查询结果定义的一个表,MQT中包括的数据来自MQT定义所基于的一个或多个表, 使用MQT能够显著提高查询的操作性能. 数据库的视图和MQT都是基于一个查询来定义的.每当视图 ...

  5. Handle-postDelayed 延迟操作

    今天在工作的时候,遇到了一个方法,是关于Handle来实现延时操作的,自己写了一个小demo,学习总结如下 xml <?xml version="1.0" encoding= ...

  6. Mysql数据库调优和性能优化

    1. 简介 在Web应用程序体系架构中,数据持久层(通常是一个关系数据库)是关键的核心部分,它对系统的性能有非常重要的影响.MySQL是目前使用最多的开源数据库,但是mysql数据库的默认设置性能非常 ...

  7. Python爬虫之『urlopen』

    本文以爬取百度首页为示例来学习,python版本为python3.6.7,完整代码会在文章末附上 本次学习所用到的python框架:urllib.request 本次学习所用到的函数: urllib. ...

  8. 怎样利用ash监控会话

    ash是很有效的监控工具之中的一个.1秒抓一次 select max(sample_time)over(),min(sample_time)over() from dba_hist_active_se ...

  9. mac下的词典翻译快捷键

    mac下的词典翻译快捷键:cmd+ctl+d;很方便

  10. HDU1023 Train Problem II【Catalan数】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1023 题目大意: 一列N节的火车以严格的顺序到一个站里.问出来的时候有多少种顺序. 解题思路: 典型 ...