在project euler 的第\(10\)题的 \(forum\) 中 Lucy Hedgehog 提到的这种方法。



### 求 $n$ 以内素数个数以及求 $n$ 以内素数和的算法。
### 定义$S(v,p)$为$2$ 到 $v$ 所有整数中,在普通筛法中外层循环筛完 $p$ 时仍然幸存的数的和。因此这些数要不本身是素数,要不其最小的素因子也大于 $p$ 。因此我们需要求的是 $S(n,\lfloor\sqrt n\rfloor)$。
### 为了计算 $S(v,p)$,先考虑几个特殊情况。


### $1.$ $p\le1$ 。此时所有数都还没有被筛掉,所以 $S(v,p)=\sum_{i=2}^{v}i=\frac{(2+v)(v-1)}{2}$。
### $2.$ $p$ 不是素数。因为筛法中 $p$ 早已被别的数筛掉,所以在这步什么都不会做,所以此时 $S(v,p)=S(v,p-1)$。
### $3.$ $p$ 是素数,但是 $v

### 现在考虑最后一种稍微麻烦些的情况:$p$ 是素数,且 $p^2\le v$。
### 此时,我们要用素数 $p$ 去筛掉剩下的那些数中 $p$ 的倍数。注意到现在还剩下的合数都没有小于 $p$ 的素因子。因此有:
### $S(v,p)=S(v,p-1)-\sum_{\substack{2\le k \le v,\\ p\mbox{为}k\mbox{的最小素因子}}}k$


### 后面那项中提取公共因子 $p$ ,有:
### $S(v,p)=S(v,p-1)-p\times\sum_{\substack{2\le k \le v,\\ p\mbox{为}k\mbox{的最小素因子}}}\frac{k}{p}$


### 因为 $p$ 整除 $k$ ,稍微变形一下,令 $t=\frac{k}{p}$,有:
### $S(v,p)=S(v,p-1)-p\times\sum_{\substack{2\le t \le \lfloor\frac{v}{p}\rfloor,\\ t\mbox{的最小素因子}\ge p}}t$


### 因为 $S$ 的定义s是(“这些数要不本身是素数,要不其最小的素因子也大于(注意!)$ p $”),此时 $p$ 后面这项可以用 $S$ 来表达。

\(S(v,p)=S(v,p-1)-p\times(S(\left\lfloor\frac{v}{p}\right\rfloor,p-1)-\{p-1\mbox{以内的所有素数和}\})\)



### 再用 $S$ 替换素数和得到最终表达式:
### $S(v,p)=S(v,p-1)-p\times(S(\left\lfloor\frac{v}{p}\right\rfloor,p-1)-S(p-1,p-1))$


### 我们最终的结果是 $S(n,\lfloor\sqrt n\rfloor)$。
### 这是求前 $n$ 的素数和的方法。
### 至于求前 $n$ 的素数个数的方法也差不多。
### 只需要把代码修改一下即可。

复杂度: \(O(n^{0.75})\)

C++代码:

#include<bits/stdc++.h>

using namespace std;
typedef long long ll; ll check(ll v, ll n, ll ndr, ll nv) {
return v >= ndr ? (n / v - 1) : (nv - v);
} // ll S[10000000];
// ll V[10000000];
ll primenum(ll n) // O(n^(3/4))
{
ll r = (ll)sqrt(n);
ll ndr = n / r;
assert(r*r <= n && (r+1)*(r+1) > n);
ll nv = r + ndr - 1;
std::vector<ll> S(nv+1);
std::vector<ll> V(nv+1);
for(ll i=0;i<r;i++) {
V[i] = n / (i+1);
}
for(ll i=r;i<nv;i++) {
V[i] = V[i-1] - 1;
}
for(ll i = 0;i<nv;i++) {
S[i] = V[i] - 1; //求素数个数
}
for(ll p=2;p<=r;p++) {
if(S[nv-p] > S[nv-p+1]) {
ll sp = S[nv-p+1]; // sum of primes smaller than p
ll p2 = p*p;
// std::cout << "p=" << p << '\n'; // p is prime
for(ll i=0;i<nv;i++) {
if(V[i] >= p2) {
S[i] -= 1LL * (S[check(V[i] / p, n, ndr, nv)] - sp);// //求素数个数
}
else break;
}
}
}
return S[0];
}
ll primesum(ll n) // O(n^(3/4))
{
ll r = (ll)sqrt(n);
ll ndr = n / r;
assert(r*r <= n && (r+1)*(r+1) > n);
ll nv = r + ndr - 1;
std::vector<ll> S(nv+1);
std::vector<ll> V(nv+1);
for(ll i=0;i<r;i++) {
V[i] = n / (i+1);
}
for(ll i=r;i<nv;i++) {
V[i] = V[i-1] - 1;
}
for(ll i = 0;i<nv;i++) {
S[i] = V[i] * ( V[i] + 1) / 2 - 1; //求素数和
}
for(ll p=2;p<=r;p++) { // p is prime
if(S[nv-p] > S[nv-p+1]) {
ll sp = S[nv-p+1]; // sum of primes smaller than p
ll p2 = p*p;
for(ll i=0;i<nv;i++) {
if(V[i] >= p2) {
S[i] -= p* (S[check(V[i] / p, n, ndr, nv)] - sp); //求素数和
}
else break;
}
}
}
return S[0];
}
int main(int argc, char const *argv[]) {
// std::cout << primesum(1e6) << '\n';
std::cout << primenum(1e10) << '\n';
std::cout << primesum(2e6) << '\n';
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
return 0;
}

Lucy_Hedgehog techniques的更多相关文章

  1. Web Application Penetration Testing Local File Inclusion (LFI) Testing Techniques

    Web Application Penetration Testing Local File Inclusion (LFI) Testing Techniques Jan 04, 2017, Vers ...

  2. 新书到手 TRANSACTION PROCESSING:CONCEPTS AND TECHNIQUES

    新书到手 TRANSACTION PROCESSING:CONCEPTS AND TECHNIQUES Jim Gray大神的著作 本文版权归作者所有,未经作者同意不得转载.

  3. MATLAB 图像处理——Contrast Enhancement Techniques

    Contrast Enhancement Techniques %调整图片尺寸imresizeimages{k} = imresize(images{k},[width*dim(1)/dim(2) w ...

  4. Looping Techniques

    [Looping Techniques] 1.When looping through dictionaries, the key and corresponding value can be ret ...

  5. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

  6. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  7. Beginners Guide To Learn Dimension Reduction Techniques

    Beginners Guide To Learn Dimension Reduction Techniques Introduction Brevity is the soul of wit This ...

  8. [翻译]比较ADO.NET中的不同数据访问技术(Performance Comparison:Data Access Techniques)

    Performance Comparison: Data Access Techniques Priya DhawanMicrosoft Developer Network January 2002 ...

  9. 小白日记45:kali渗透测试之Web渗透-SqlMap自动注入(三)-sqlmap参数详解-Optimization,Injection,Detection,Techniques,Fingerprint

    sqlmap自动注入 Optimization [优化性能参数,可提高效率] -o:指定前三个参数(--predict-output.--keep-alive.--null-connection) - ...

随机推荐

  1. Python协程一点理解

    协程,又称微线程,纤程.英文名Coroutine. 线程是系统级别的它们由操作系统调度,而协程则是程序级别的由程序根据需要自己调度.在一个线程中会有很多函数,我们把这些函数称为子程序,在子程序执行过程 ...

  2. MySQL改变表的存储引擎

    MySQL提供了多种数据库存储引擎,存储引擎负责MySQL数据库中的数据的存储和提取.不同的存储引擎具有不同的特性,有时可能须要将一个已经存在的表的存储引擎转换成另外的一个存储引擎.有非常多方法能够完 ...

  3. Google开源新的 RISC-V IP核: “BottleRocket”(https://cnrv.io)

    BottleRocket是RISCV RV32IMC的实现. Google在2017年11月29日在Github上非官方开源了BottleRocket的RTL代码,同时表明这并不是一个官方支持的Goo ...

  4. 31.Intellij idea 的maven项目如何通过maven自动下载jar包

    转自:https://blog.csdn.net/u012851114/article/details/81872981 maven项目自动加载jar包 所需工具如下: Intellij IDEA 1 ...

  5. solrj简介

    SolrJ基于httpClient: 使用SolrJ操作Solr会比利用httpClient来操作Solr要简单. SolrJ是封装了httpClient方法,来操作solr的API的. SolrJ底 ...

  6. POJ 1742 Coins 优化后的多重背包

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 37853   Accepted: 12849 Descripti ...

  7. find---查找文件或目录

    ind命令用来在指定目录下查找文件.任何位于参数之前的字符串都将被视为欲查找的目录名.如果使用该命令时,不设置任何参数,则find命令将在当前目录下查找子目录与文件.并且将查找到的子目录和文件全部进行 ...

  8. 【例题 8-11 UVA-10954】Add All

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 就是合并果子.. 每次都合并最小的就可以啦. 别忘了初始化 [代码] /* 1.Shoud it use long long ? 2 ...

  9. 洛谷 P2958 [USACO09OCT]木瓜的丛林Papaya Jungle

    P2958 [USACO09OCT]木瓜的丛林Papaya Jungle 题目描述 Bessie has wandered off the farm into the adjoining farmer ...

  10. VS:&quot;64位调试操作花费的时间比预期要长&quot;的一解决途径

    解决的方法之中的一个: 在命令提示符那里打入例如以下命令: netsh winsock reset catalog netsh int ip reset reset.log hit 重新启动电脑后,就 ...