题目背景

这是一道模板题。

题目描述

给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105 )

求 C_{n+m}^{m}\ mod\ pCn+mm​ mod p

保证P为prime

C表示组合数。

一个测试点内包含多组数据。

输入输出格式

输入格式:

第一行一个整数T(T\le 10T≤10 ),表示数据组数

第二行开始共T行,每行三个数n m p,意义如上

输出格式:

共T行,每行一个整数表示答案。

Lucas定理这个东西就不细学了。

毕竟就一行代码,辣么好背

$\begin{pmatrix} n \\ m \end{pmatrix}modp=\begin{pmatrix} n & modp \\ m & modp \end{pmatrix}\ast \begin{pmatrix} \dfrac {n}{p} \\ \dfrac {m}{p} \end{pmatrix}modp$

输入输出样例

输入样例#1: 复制

2
1 2 5
2 1 5
输出样例#1: 复制

3
3

洛谷P3807 【模板】卢卡斯定理exgcd的更多相关文章

  1. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  2. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 洛谷——P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...

  5. 洛谷 P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...

  6. 【刷题】洛谷 P3807 【模板】卢卡斯定理

    题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...

  7. 【洛谷P3807】(模板)卢卡斯定理

    卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...

  8. [洛谷P4720] [模板] 扩展卢卡斯

    题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...

  9. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  10. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

随机推荐

  1. 题解 P2532 【[AHOI2012]树屋阶梯】

    本题运用卡特兰数求解. 卡特兰数有两种表达方式: 1)\(h_i=\sum^{k=0}_{i-1}h_kh_{i-k-1}\) 2)\(h_i=\frac{1}{n+1}C^{n}_{2n}\) 运用 ...

  2. C++根据扩展名获取文件图标、类型

    简述 在Windows系统中,根据扩展名来区分文件类型,比如:.txt(文本文件)..exe(可执行程序).*.zip(压缩文件),下面,我们来根据扩展名来获取对应的文件图标.类型. 简述 源码 源码 ...

  3. "duplicate symbol for architecture i386" 解决的方法

    我在写项目的过程中,碰到了这个错误,我在网上查了一下,发现这个错误的原因是,project里面有反复的类. 解决方式:找到反复的类,然后删除掉就好了. 分析一下, 如图. 能够看出, 错误类型是 du ...

  4. POJ 2516 Minimum Cost (最小费用最大流)

    POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...

  5. Java - 多线程Callable、Executors、Future

    http://blog.csdn.net/pipisorry/article/details/44341579 Introduction Callable接口代表一段能够调用并返回结果的代码; Fut ...

  6. Android面试精华

    SIM卡的EF文件有什么作用? SIM卡里的全部文件按树来组织: 主文件MF(Master File)--主文件仅仅有文件头,里面存放着整个SIM卡的控制和管理信息 专用文件DF(Dedicated ...

  7. hdoj--5256--序列变换(lis变形)

    序列变换 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  8. 7. 关于IntelliJ IDEA删除项目

    转自:https://www.cnblogs.com/zhangqian27/p/7698148.html 刚开始使用IDEA . 自己创建项目玩,结果发现IDEA无法删除,我也是醉了,Eclipse ...

  9. A string is a sequence

    A string is a sequence of characters. You can access the characters one at a time with the bracket o ...

  10. Adobe Photoshop CC 2015(PS CC 2015)看图不说话