首先做一个转化,这种转化很常见。

题目里面讲要来回走一遍,所以就转化成两个从起点到终点,路径不重合

那么很容易想到用f[i][j]表示第一个走到i,第二个人走到j还需要走的距离

但是这里无法保证路径不重合,所以这里怎么设计状态很关键。

我们设f[i][j]是1到max(i, j)全部走过,同时第一个在i,第二人在j,

还需要走的距离,可以看出f[i][j] = f[j][i],所以我们可以规定i > j

那么这么规定有什么好处呢?我们可以让两个人走的路径是1, 2, 3, 4……

换句话说,当前是f[i][j],根据定义,1到i全部走过,接下来要走到第i+1个位置

假设是第一个人走,也就是在i的这个人走,那么可以从f[i][j]转移到f[i+1][j]

假设是第二个人走,也就是在j的这个人走,那么可以从f[i][j]转移到f[i+1][i](j到i+1,而规定前面的要大)

dist[i][j]表示i到j的欧几里得距离

边界是f[n-1][j] = dist[i][n] + dist[j][n]最后的时候肯定是两个人走到终点,我们要从终点逆推

最终答案是d[2][1] + dist[2][1]。

#include<cstdio>
#include<algorithm>
#include<cmath>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 55;
double x[MAXN], y[MAXN], dist[MAXN][MAXN], d[MAXN][MAXN]; int main()
{
int n;
while(~scanf("%d", &n))
{
REP(i, 1, n + 1) scanf("%lf%lf", &x[i], &y[i]);
REP(i, 1, n + 1)
REP(j, 1, n + 1)
dist[i][j] = sqrt(pow(x[i]-x[j], 2) + pow(y[i]-y[j], 2)); for(int i = 2; i <= n; i++)
REP(j, 1, i)
{
if(i == 2) d[i][j] = dist[1][2];
else d[i][j] = min(d[i+1][j] + dist[i][i+1], d[i+1][i] + dist[i+1][j]);
}
printf("%.2lf\n", d[2][1] + dist[2][1]);
}
return 0;
}

紫书 例题 9-3 UVa 1347 ( 状态设计)的更多相关文章

  1. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)

    这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...

  2. 紫书 例题8-3 UVa 1152(中途相遇法)

    这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...

  3. 紫书 例题8-12 UVa 12627 (找规律 + 递归)

    紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...

  4. 紫书 例题8-4 UVa 11134(问题分解 + 贪心)

     这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...

  5. 紫书 例题8-17 UVa 1609 (构造法)(详细注释)

    这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...

  6. 紫书 例题 9-5 UVa 12563 ( 01背包变形)

    总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...

  7. 紫书 例题 11-6 UVa 658 (状态压缩+隐式图搜索+最短路)

    这道题用到了很多知识点, 是一道好题目.      第一用了状态压缩, 因为这里最多只有20位, 所以可以用二进制来储存状态 (要对数据范围敏感), 然后 涉及到了一些位运算.     第二这里是隐式 ...

  8. 紫书 例题7-14 UVa 1602(搜索+STL+打表)

    这道题想了很久不知道怎么设置状态,怎么拓展,怎么判重, 最后看了这哥们的博客 终于明白了. https://blog.csdn.net/u014800748/article/details/47400 ...

  9. 紫书 例题 10-2 UVa 12169 (暴力枚举)

    就是暴力枚举a, b然后和题目给的数据比较就ok了. 刘汝佳这道题的讲解有点迷,书上讲有x1和a可以算出x2, 但是很明显x2 = (a * x1 +b) 没有b怎么算x2?然后我就思考了很久,最后去 ...

随机推荐

  1. 程序员之---C语言细节12(指针和数组细节,&quot;//&quot;的可移植性说明)

    主要内容:指针和数组细节,"//"的可移植性说明 #include <stdio.h> int main(int argc, char **argv) { int a[ ...

  2. 2.跟我学solr---在solr admin中加入索引

    这一章为大家介绍怎样在solr admin中.通过浏览器向solr加入索引 一.加入xml格式的文档 进入solr admin后,点击Documents.选择Documentation Type为xm ...

  3. mysql-数据分组

    一.创建分组 上面所讲的语句都是建立在表的所有数据或匹配特定的where子句的数据上进行的.是否能够进行分组,在进行汇总计算哪儿?例如:要想返回每个供应商提供的产品数目怎么办? 分组是在select语 ...

  4. Linux 经常使用快捷键

    桌面下: Alt+F5   取消最大化窗体 Alt+F9   最小化窗体  Alt+F10  最大化窗体  Alt+空格 打开窗体的控制菜单 (点击窗体左上角图标出现的菜单)     ctl+r   ...

  5. 13.MongoDB 连接命令格式

    转自:https://www.linuxidc.com/Linux/2016-03/129456.htm 使用用户 admin 使用密码 123456 连接到本地的 MongoDB 服务上.输出结果如 ...

  6. [NOIP2015模拟10.27] [JZOJ4270] 魔道研究 解题报告(动态开点+权值线段树上二分)

    Description “我希望能使用更多的魔法.不对,是预定能使用啦.最终我要被大家称呼为大魔法使.为此我决定不惜一切努力.”——<The Grimoire of Marisa>雾雨魔理 ...

  7. POJ 2449 第k短路 Dijkstra+A*

    这道题我拖了半年,,,终于写出来了 思路: 先反向建边 从终点做一次最短路 ->这是估价函数h(x) 再正常建边,从起点搜一遍 (priority_queue(h(x)+g(x))) g(x)是 ...

  8. Windows Phone相关

    Windows Phone IP over USB Transport (IpOverUsbSvc) is not running 进“服务”搜索 “Windows Phone IP Over USB ...

  9. NodeJS学习笔记 进阶 (12)Nodejs进阶:crypto模块之理论篇

    个人总结:读完这篇文章需要30分钟,这篇文章讲解了使用Node处理加密算法的基础. 摘选自网络 Nodejs进阶:crypto模块之理论篇 一. 文章概述 互联网时代,网络上的数据量每天都在以惊人的速 ...

  10. poi导出excel缩放比例的问题

    某次修改了一下controller里导出清单的表格格式之后,就发现一直有这个问题,今天把手头的活都处理完了就在找问题出在哪,好在导出清单的格式写在了两个controller里,对照一比较发现了问题,s ...