Codeforces 959E. Mahmoud and Ehab and the xor-MST 思路:找规律题,时间复杂度O(log(n))
题目:

解题思路
这题就是0,1,2...n-1总共n个数字形成的最小生成树。
我们可以发现,一个数字k与比它小的数字形成的异或值,一定可以取到k与所有正整数形成的异或值的最小值。
要计算n个数字的情况我们可以通过n-1个数字的情况得来,意为前n-1个数字的最小生成树已经生成好了,我们需要给第n个数字连一条边,使新的树为n个数字的最小生成树。
通过找规律我们可以发现:
- 每隔2个数字多一个权值为1的边。
- 每隔4个数字多一个权值为2的边。
- 每隔8个数字多一个权值为4的边。
- ……
- 每隔2^n个数字多一个权值为2^(n-1)的边。

我们把这些边加起来可以推出这样一个公式:

注意除以2^(i+1)和乘2^i不能直接抵消,因为这里的数字全是int型,没有小数。
时间复杂度:
O(log(n))
代码:
#include<bits\stdc++.h>
using namespace std;
typedef long long ll;
int main(){
ll n;
while(cin >> n){
n--;
int m = log(n)/log();
ll ans = ;
for(int i = ;i <= m; i++){
ans += ((ll)(n+pow(,i))/(ll)pow(,i+))*(ll)pow(,i);
}
cout << ans << endl;
}
return ;
}
Codeforces 959E. Mahmoud and Ehab and the xor-MST 思路:找规律题,时间复杂度O(log(n))的更多相关文章
- CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)
<题目链接> 题目大意: 给定一个数n,代表有一个0~n-1的完全图,该图中所有边的边权为两端点的异或值,求这个图的MST的值. 解题分析: 数据较大,$10^{12}$个点的完全图,然后 ...
- # E. Mahmoud and Ehab and the xor-MST dp/数学+找规律+xor
E. Mahmoud and Ehab and the xor-MST dp/数学/找规律 题意 给出一个完全图的阶数n(1e18),点由0---n-1编号,边的权则为编号间的异或,问最小生成树是多少 ...
- Codeforces 862C - Mahmoud and Ehab and the xor
862C - Mahmoud and Ehab and the xor 思路:找两对异或后等于(1<<17-1)的数(相当于加起来等于1<<17-1),两个再异或一下就变成0了 ...
- CodeForces - 862C Mahmoud and Ehab and the xor(构造)【异或】
<题目链接> 题目大意: 给出n.m,现在需要你输出任意n个不相同的数(n,m<1e5),使他们的异或结果为m,如果不存在n个不相同的数异或结果为m,则输出"NO" ...
- Codeforces.959E.Mahmoud and Ehab and the xor-MST(思路)
题目链接 \(Description\) 有一张\(n\)个点的完全图,从\(0\)到\(n-1\)标号,每两点\(i,j\)间的边权为\(i\oplus j\).求其最小生成树边权之和. \(Sol ...
- CodeForces - 862C Mahmoud and Ehab and the xor(构造)
题意:要求构造一个n个数的序列,要求n个数互不相同,且异或结果为x. 分析: 1.因为0 ^ 1 ^ 2 ^ 3 ^ ... ^ (n - 3) ^ (n - 2) ^ (0 ^ 1 ^ 2 ^ 3 ...
- Coderfroces 862 C. Mahmoud and Ehab and the xor
C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...
- Codeforces 959D. Mahmoud and Ehab and another array construction task(构造, 简单数论)
Codeforces 959D. Mahmoud and Ehab and another array construction task 题意 构造一个任意两个数都互质的序列,使其字典序大等于a序列 ...
- Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)
Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...
随机推荐
- HDU 1757 矩阵快速幂加速递推
题意: 已知: 当x<10时:f(x)=x 否则:f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + --+ a9 * f(x-10); 求:f(x ...
- struts2学习之基础笔记1
第6章 Strusts 2框架 1 引出 Web App àà MVC àà View 视图(jsp,html,JS) | C(Servlet)Filter,Listneer | M(数据bea ...
- JAVA在线观看视频教程完整版
今天给大家介绍一下JAVA在线观看视频教程完整版,我们知道Java是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由Sun Microsystems公司于1995年5月推出的Java程序设计语 ...
- 2018年江西理工大学C语言程序设计竞赛高级组部分题解
B Interesting paths 考察范围:组合数学 此题是机器人走方格的变种,n*m的网格,从(1,1)走到(n,m),首先可以明确,水平要走m-1格,竖直要走n-1格,则走到目的地的任意一条 ...
- 编程范式(Programming Paradigm)-[ 程序员的编程世界观 ]
编程范式(Programming Paradigm)是某种编程语言典型的编程风格或者说是编程方式.随着编程方法学和软件工程研究的深入,特别是OO思想的普及,范式(Paradigm)以及编程范式等术语渐 ...
- 【AnjularJS系列5 】— scopes、module、controller
第五篇, scopes.module.controller 这一篇,感觉,在前面几篇就使用过的属性,但,总觉得没有理解透彻,有待完善!~ 1.scopes A.定义:$scope是一个把view(一个 ...
- struts 中数据处理的3中方式
方式一: 获取servletapi中的对象 方式二: struts中封装的对象 方式三: 实现接口 方式一和方式二的区别 方式一需要额外引入包或者是方式二实现不了的功能,比如:获取url 因为方式二只 ...
- Java 面向对象详解
0 引言 接触项目开发也有很长一段时间了,最近开始萌发出想回过头来写写以前学过的基础知识的想法. 1 面向对象 面向对象(Object Oriented)是一种新兴的程序设计方法,或者是一种新的程序设 ...
- 进入docker 容器内命令
docker exec :在运行的容器中执行命令 语法 docker exec [OPTIONS] CONTAINER COMMAND [ARG...] OPTIONS说明: -d :分离模式: 在后 ...
- React:关于虚拟DOM(Virtual DOM)
Virtual DOM 是一个模拟 DOM 树的 JavaScript 对象. React 使用 Virtual DOM 来渲染 UI,当组件状态 state 有更改的时候,React 会自动调用组件 ...