题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005

     洛谷 P1447 https://www.luogu.org/problemnew/show/P1447

首先,题意就是求 ∑(1 <= i <= n) ∑(1 <= j <= m) [ 2 * gcd(i,j) -1 ];

方法1:容斥原理

枚举每个数作为 gcd 被算了几次;

对于 d ,算的次数 f[d] 就是 n/d 和 m/d 中互质的数的对数;

所有数对的个数是 (n/d) * (m/d),减去其中 gcd 是2,3……的数对个数,这里就可以用到之前算出来的答案;

比如要减去这之中 gcd 是2的数对,那么减去 f[d/2] 即可,而且因为定义原因不会重复减;

然后 *2 -1 即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
int n,m;
ll f[maxn],ans;
int main()
{
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
for(int g=n;g;g--)
{
f[g]=(ll)(n/g)*(m/g);//(ll) //加括号!因为要下取整
for(int i=;i*g<=n;i++)f[g]-=f[i*g];
// ans+=2*tmp;
ans+=(g*-)*f[g];
}
printf("%lld\n",ans);
return ;
}

方法2:莫比乌斯反演

原式 ∑(1 <= i <= n) ∑(1 <= j <= m) [ 2 * gcd(i,j) - 1 ]  ( n = min(m,n) )

由于 n = ∑ ( d|n ) φ(d)  (感性理解:约分……)

所以原式变成 ∑(1 <= i <= n) ∑(1 <= j <= m) [ 2 * ∑ ( d|i , d|j ) φ(d) - 1]

把 d 提前,-1提出去 ∑( 1 <= d <= n ) [ 2 * φ(d) * ∑(1 <= i <= n|d ) ∑(1 <= j <= m|d ) 1 ] - n*m

也就是 2 * ∑( 1 <= d <= n ) [ φ(d) * (n/d) * (m/d) ] - n*m

注意 φ(1) = 1!

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
int n,m,p[maxn],phi[maxn],cnt;
ll ans;
void init()
{
phi[]=;//!
for(int i=;i<=n;i++)
{
if(!phi[i])p[++cnt]=i,phi[i]=i-;
for(int j=;j<=cnt&&i*p[j]<=n;j++)
{
phi[i*p[j]]=phi[i]*(p[j]-);
if(i%p[j]==)phi[i*p[j]]=phi[i]*p[j];
}
}
}
int main()
{
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
init();
for(int g=;g<=n;g++)
ans+=*(ll)phi[g]*(n/g)*(m/g);
ans-=(ll)n*m;
printf("%lld\n",ans);
return ;
}

bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演的更多相关文章

  1. ●BZOJ 2005 NOI 2010 能量采集

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题解: 一个带有容斥思想的递推.%%% 首先,对于一个点 (x,y) 在路径 (0,0 ...

  2. 洛谷P4240 毒瘤之神的考验 【莫比乌斯反演 + 分块打表】

    题目链接 洛谷P4240 题解 式子不难推,分块打表真的没想到 首先考虑如何拆开\(\varphi(ij)\) 考虑公式 \[\varphi(ij) = ij\prod\limits_{p | ij} ...

  3. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  4. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  5. [bzoj 2005][NOI 2010]能量采集(容斥原理+递推)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 分析:首先易得ans=∑gcd(x,y)*2+1 然后我就布吉岛了…… 上网搜了下题解, ...

  6. bzoj 2005 NOI 2010 能量采集

    我们发现对于一个点(x,y),与(0,0)连线上的点数是gcd(x,y)-1 那么这个点的答案就是2*gcd(x,y)-1,那么最后的答案就是所有点 的gcd值*2-n*m,那么问题转化成了求每个点的 ...

  7. 洛谷 1447 [NOI2010]能量采集——容斥/推式子

    题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...

  8. [NOI 2010]能量采集

    Description 题库链接 给你一个 \(n\times m\) 的坐标轴.对于坐标轴的每一个正整数整点 \((x,y)\) 其对答案产生的贡献为 \(2k+1\) ,其中 \(k\) 表示这个 ...

  9. BZOJ 2005: [Noi2010]能量采集(容斥+数论)

    传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\s ...

随机推荐

  1. SetACL 使用方法详细参数中文解析

    示例: SetACL.exe c:\nihao /dir /deny everyone /read_ex 设置E:\wxDesktop 文件夹 everyone 用户为读取和运行权限 SetACL M ...

  2. API 接口监控产品全新改版,免费开放全部功能

    作为 EOLINKER 研发管理体系的重要一环,EOLINKER 接口监控即 AMT 产品将在 3月4日 迎来全新变化,AMT 产品将正式命名为 EOLINKER-API Beacon --API-烽 ...

  3. react typescript 父组件调用子组件

    //父组件import * as React from 'react'import { Input } from 'antd'const Search = Input.Searchimport &qu ...

  4. do{}while(0)

    有时会在源码中或在写代码时在宏定义中用到do...while(0). 采用这种方式进行宏定义, 主要是为了防止出现以下错误 : do{}while(0) 空的宏定义避免出现warnning. #def ...

  5. 救济金发放(The Dole Queue, UVa 133)

    n(n<20)个人站成一圈,逆时针编号为1-n.有两个官员,A从1开始逆时针数,B从n开 始顺时针数.在每一轮中,官员A数k个就停下来,官员B数m个就停下来(注意有可能两个 官员停在同一个人上) ...

  6. 学习记录--如何将exec执行结果放入变量中?

    declare @num int, ) set @sqls='select @a=count(*) from tb ' exec sp_executesql @sqls,N'@a int output ...

  7. [bzoj3747][POI2015]Kinoman_线段树

    Kinoman bzoj-3747 POI-2015 题目大意:有m部电影,第i部电影的好看值为w[i].现在放了n天电影,请你选择一段区间l~r使得l到r之间的好看值总和最大.特别地,如果同一种电影 ...

  8. 最小堆的两种实现及其STL代码

    #include<cstdio> #include<iostream> #include<algorithm> #include<vector> boo ...

  9. 一个oracle bug

    最近发现一个RAC db的listener log增长特别快,于是去查看了一下. 先是查看了一下log的内容,发现都是 service_update这种内容,刷新的特别快. service_updat ...

  10. servlet和Spring的DispatcherServlet详解

    Servlet是什么 1. Servlet是服务器端运行的一个程序,是一个被编译好的Java类.它不是框架等. 2. Web容器的启动,需要依赖Servlet.当web服务器开始执行时,servlet ...