之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结。这里我们就从实战的角度来看朴素贝叶斯类库。重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择。

1. scikit-learn 朴素贝叶斯类库概述

    朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。

    这三个类适用的分类场景各不相同,一般来说,如果样本特征的分布大部分是连续值,使用GaussianNB会比较好。如果如果样本特征的分大部分是多元离散值,使用MultinomialNB比较合适。而如果样本特征是二元离散值或者很稀疏的多元离散值,应该使用BernoulliNB。

2. GaussianNB类使用总结

    GaussianNB假设特征的先验概率为正态分布,即如下式:

$$P(X_j=x_j|Y=C_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}}exp\Bigg{(}-\frac{(x_j - \mu_k)^2}{2\sigma_k^2}\Bigg{)}$$

    其中$C_k$为Y的第k类类别。$\mu_k和\sigma_k^2$为需要从训练集估计的值。

    GaussianNB会根据训练集求出$\mu_k和\sigma_k^2$。 $\mu_k$为在样本类别$C_k$中,所有$X_j$的平均值。$\sigma_k^2$为在样本类别$C_k$中,所有$X_j$的方差。

    GaussianNB类的主要参数仅有一个,即先验概率priors ,对应Y的各个类别的先验概率$P(Y=C_k)$。这个值默认不给出,如果不给出此时$P(Y=C_k) = m_k/m$。其中m为训练集样本总数量,$m_k$为输出为第k类别的训练集样本数。如果给出的话就以priors 为准。

    在使用GaussianNB的fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。

    predict方法就是我们最常用的预测方法,直接给出测试集的预测类别输出。

    predict_proba则不同,它会给出测试集样本在各个类别上预测的概率。容易理解,predict_proba预测出的各个类别概率里的最大值对应的类别,也就是predict方法得到类别。

    predict_log_proba和predict_proba类似,它会给出测试集样本在各个类别上预测的概率的一个对数转化。转化后predict_log_proba预测出的各个类别对数概率里的最大值对应的类别,也就是predict方法得到类别。

    下面给一个具体的例子,代码如下,亦可见我的github

import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
#拟合数据
clf.fit(X, Y)
print "==Predict result by predict=="
print(clf.predict([[-0.8, -1]]))
print "==Predict result by predict_proba=="
print(clf.predict_proba([[-0.8, -1]]))
print "==Predict result by predict_log_proba=="
print(clf.predict_log_proba([[-0.8, -1]]))

    结果如下:

==Predict result by predict==
[1]
==Predict result by predict_proba==
[[ 9.99999949e-01 5.05653254e-08]]
==Predict result by predict_log_proba==
[[ -5.05653266e-08 -1.67999998e+01]]

    从上面的结果可以看出,测试样本[-0.8,-1]的类别预测为类别1。具体的测试样本[-0.8,-1]被预测为1的概率为9.99999949e-01 ,远远大于预测为2的概率5.05653254e-08。这也是为什么最终的预测结果为1的原因了。

    此外,GaussianNB一个重要的功能是有 partial_fit方法,这个方法的一般用在如果训练集数据量非常大,一次不能全部载入内存的时候。这时我们可以把训练集分成若干等分,重复调用partial_fit来一步步的学习训练集,非常方便。后面讲到的MultinomialNB和BernoulliNB也有类似的功能。

3. MultinomialNB类使用总结

    MultinomialNB假设特征的先验概率为多项式分布,即如下式:

$$P(X_j=x_{jl}|Y=C_k) = \frac{x_{jl} + \lambda}{m_k + n\lambda}$$

    其中,$P(X_j=x_{jl}|Y=C_k)$是第k个类别的第j维特征的第l个个取值条件概率。$m_k$是训练集中输出为第k类的样本个数。$\lambda$ 为一个大于0的常数,常常取为1,即拉普拉斯平滑。也可以取其他值。

    MultinomialNB参数比GaussianNB多,但是一共也只有仅仅3个。其中,参数alpha即为上面的常数$\lambda$,如果你没有特别的需要,用默认的1即可。如果发现拟合的不好,需要调优时,可以选择稍大于1或者稍小于1的数。布尔参数fit_prior表示是否要考虑先验概率,如果是false,则所有的样本类别输出都有相同的类别先验概率。否则可以自己用第三个参数class_prior输入先验概率,或者不输入第三个参数class_prior让MultinomialNB自己从训练集样本来计算先验概率,此时的先验概率为$P(Y=C_k) = m_k/m$。其中m为训练集样本总数量,$m_k$为输出为第k类别的训练集样本数。总结如下:

fit_prior class_prior 最终先验概率
false 填或者不填没有意义 $P(Y=C_k) = 1/k$
true 不填 $P(Y=C_k) = m_k/m$
true $P(Y=C_k) = $class_prior

    在使用MultinomialNB的fit方法或者partial_fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。 

4. BernoulliNB类使用总结

    BernoulliNB假设特征的先验概率为二元伯努利分布,即如下式:

$$P(X_j=x_{jl}|Y=C_k) = P(j|Y=C_k)x_{jl} + (1 - P(j|Y=C_k)(1-x_{jl}) $$

    此时$l$只有两种取值。$x_{jl}$只能取值0或者1。

    BernoulliNB一共有4个参数,其中3个参数的名字和意义和MultinomialNB完全相同。唯一增加的一个参数是binarize。这个参数主要是用来帮BernoulliNB处理二项分布的,可以是数值或者不输入。如果不输入,则BernoulliNB认为每个数据特征都已经是二元的。否则的话,小于binarize的会归为一类,大于binarize的会归为另外一类。

    在使用BernoulliNB的fit或者partial_fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。

    以上就是scikit-learn 朴素贝叶斯类库的使用的经验总结。希望可以帮到朋友们。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

scikit-learn 朴素贝叶斯类库使用小结的更多相关文章

  1. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  2. [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)

    Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...

  3. NLP系列(2)_用朴素贝叶斯进行文本分类(上)

    作者:龙心尘 && 寒小阳 时间:2016年1月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50597149 h ...

  4. NLP系列(3)_用朴素贝叶斯进行文本分类(下)

    作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 ...

  5. 一步步教你轻松学朴素贝叶斯模型算法Sklearn深度篇3

    一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对 ...

  6. 【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)

    参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/ ...

  7. 朴素贝叶斯python小样本实例

    朴素贝叶斯优点:在数据较少的情况下仍然有效,可以处理多类别问题缺点:对于输入数据的准备方式较为敏感适用数据类型:标称型数据朴素贝叶斯决策理论的核心思想:选择具有最高概率的决策朴素贝叶斯的一般过程(1) ...

  8. 3.朴素贝叶斯和KNN算法的推导和python实现

    前面一个博客我们用Scikit-Learn实现了中文文本分类的全过程,这篇博客,着重分析项目最核心的部分分类算法:朴素贝叶斯算法以及KNN算法的基本原理和简单python实现. 3.1 贝叶斯公式的推 ...

  9. 【机器学习实战笔记(3-2)】朴素贝叶斯法及应用的python实现

    文章目录 1.朴素贝叶斯法的Python实现 1.1 准备数据:从文本中构建词向量 1.2 训练算法:从词向量计算概率 1.3 测试算法:根据现实情况修改分类器 1.4 准备数据:文档词袋模型 2.示 ...

随机推荐

  1. C# base64 Img 互转

    [AcceptVerbs(HttpVerbs.Post)] public JsonResult Upload(HttpPostedFileBase fileData) { try { if (file ...

  2. JAVA自定义注解

    在学习使用Spring和MyBatis框架的时候,使用了很多的注解来标注Bean或者数据访问层参数,那么JAVA的注解到底是个东西,作用是什么,又怎样自定义注解呢?这篇文章,即将作出简单易懂的解释. ...

  3. Torch7 Tensor切片总结

    1.narrow(k,m,n) 这个函数是选中第k维的从m行开始,供选中n行 2.sub(dim1s,dim1e[,dim2s,dim2e,..,dim4s,dim4e]) 功能最强大,可以切任意的一 ...

  4. oracle导出一条二进制数据(二进制,long只能通过dmp导出)

    exp jxfoc/JXFOC@ORCL file=d:\dd.dmp tables=(jxfoc.FLIGHT_PLAN_MAKE_LOG,jxfoc.METAR_CONTENT_FOR_MAIL) ...

  5. HTML 上传图片实用小技巧

    最近写的项目需要用的上传图片的功能但是浏览器自带的按钮样式实在是不忍直视,肯定要进行修改,网上也有很多方法(自己查....),我这里用了个取巧的方法:就是函数的间接调用 在点击btn的时候让它执行了图 ...

  6. mathlab之floor,ceil,round,int以及fix函数

    建议自己动手敲敲,网上很多人自己都没搞清楚然后好多错的.毕竟自己亲眼看到结果才有说服力. 以下是我亲眼见到的结果. 1.double floor(double)函数 floor()函数是常用的取整函数 ...

  7. java-如何用eclipse打包jar

    Eclipse通过导出的方式(右键单击项目,之后选择Export)打包java类文件生成jar包. 方法一:(在项目工程没有引用外部jar包时,直接导出) 选中工程---->右键,Export. ...

  8. c/c++头文件_string

    string, cstring, string.h 一.string头文件 主要包含一些字符串转换的函数 // sto* NARROW CONVERSIONS// sto* WIDE CONVERSI ...

  9. 省市县三级联动(jqurey+json)

    1.效果图 2.联动js /** * jquery.choosearea.js - 地区联动封装 */ ; (function ($) { var choosearea = function (opt ...

  10. ASP.NET Core 数据保护(Data Protection 集群场景)【下】

    前言 接[中篇],在有一些场景下,我们需要对 ASP.NET Core 的加密方法进行扩展,来适应我们的需求,这个时候就需要使用到了一些 Core 提供的高级的功能. 本文还列举了在集群场景下,有时候 ...