题意:链接

方法:cdq分治或平衡树维护凸包

解析:

这道题我拒绝写平衡树的题解,我仅仅想说splay不要写挂,insert边界条件不要忘。del点的时候不要脑抽d错。有想写平衡树的去看140142或者留言我。

首先这道题能推出个表达式

f[i]代表第i天最大收益。

xx[i]表示将第i天的钱都买A的数量

yy[i]表示将第i天的钱都买B的数量

所以f[i]=max(f[i−1],p[i].a∗xx[j]+p[i].b∗yy[j])j<i

所以我们要维护这个n^2的递推式

又知道f[i]是由小于i的j更新的,

但方程要进一步写一下

yy[i]=(-p[i].a/p[i].b)*xx[i]+f[i]/p[i].b

所以我们要得到最大截距所以能够依照斜率递减维护一个凸包来找某一确定直线与这个凸包截得的最大截距,也就是斜率第一个小于等于它的某个凸包上的点。

之后的部分就是採用cdq维护或者平衡树

平衡树真是一个噩梦

代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 100010
#define eps 1e-9
#define INF 0x7fffffff
using namespace std;
typedef long long ll;
int n;
double f[N];
int stack[N];
struct node
{
double x,y,a,b,rate,k;
int w;
}p[N],t[N];
int cmp(node a,node b)
{
return a.k>b.k;
}
double getk(int a,int b)
{
if(!b)return -INF;
if(fabs(p[a].x-p[b].x)<eps)return INF;
return (p[b].y-p[a].y)/(p[b].x-p[a].x);
}
void solve(int l,int r)
{
if(l==r)
{
f[l]=max(f[l-1],f[l]);
p[l].y=f[l]/(p[l].a*p[l].rate+p[l].b);
p[l].x=p[l].rate*p[l].y;
return;
}
int mid=(l+r)>>1;
int l1=l,l2=mid+1,pt=1;
for(int i=l;i<=r;i++)
{
if(p[i].w<=mid)t[l1++]=p[i];
else t[l2++]=p[i];
}
for(int i=l;i<=r;i++)p[i]=t[i];
solve(l,mid);
int top=0;
for(int i=l;i<=mid;i++)
{
while(top>1&&getk(stack[top-1],stack[top])<=getk(stack[top],i))top--;
stack[++top]=i;
}
stack[++top]=0;
for(int i=mid+1;i<=r;i++)
{
while(pt<top&&getk(stack[pt],stack[pt+1])>p[i].k)pt++;
f[p[i].w]=max(f[p[i].w],p[stack[pt]].x*p[i].a+p[stack[pt]].y*p[i].b);
}
solve(mid+1,r);
l1=l,l2=mid+1;
for(int i=l;i<=r;i++)
if(((p[l1].x<p[l2].x||(fabs(p[l1].x-p[l2].x)<eps&&p[l1].y<p[l2].y))||l2>r)&&l1<=mid)t[i]=p[l1++];
else t[i]=p[l2++];
for(int i=l;i<=r;i++)p[i]=t[i];
}
int main()
{
scanf("%d%lf",&n,&f[0]);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf",&p[i].a,&p[i].b,&p[i].rate);
p[i].k=-p[i].a/p[i].b;
p[i].w=i;
}
sort(p+1,p+1+n,cmp);
solve(1,n);
printf("%.3lf\n",f[n]);
}

BZOJ 1492 货币兑换 cdq分治或平衡树维护凸包的更多相关文章

  1. 【BZOJ1492】【Luogu P4027】 [NOI2007]货币兑换 CDQ分治,平衡树,动态凸包

    斜率在转移顺序下不满足单调性的斜率优化\(DP\),用动态凸包来维护.送命题. 简化版题意:每次在凸包上插入一个点,以及求一条斜率为\(K\)的直线与当前凸包的交点.思路简单实现困难. \(P.s\) ...

  2. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  3. [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)

    [BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...

  4. BZOJ 1492 货币兑换 Cash CDQ分治

    这题n2算法就是一个维护上凸包的过程. 也可以用CDQ分治做. 我的CDQ分治做法和网上的不太一样,用左边的点建立一个凸包,右边的点在上面二分. 好处是思路清晰,避免了凸包的插入删除,坏处是多了一个l ...

  5. BZOJ 1492 货币兑换

    Description Input 第一行两个正整数\(N,S\),分别表示小Y 能预知的天数以及初始时拥有的钱数. 接下来\(N\)行,第\(K\)行三个实数\(A_{K},B_{K},Rate_{ ...

  6. BZOJ 1492 货币兑换Cash

    http://www.lydsy.com/JudgeOnline/problem.php?id=1492 思路: 问题转变为维护一个凸包,每次转移都找凸包上的点,并更新凸壳 可以用splay维护,或者 ...

  7. [NOI2007]货币兑换 cdq分治,斜率优化

    [NOI2007]货币兑换 LG传送门 妥妥的\(n \log n\)cdq做法. 这题用cdq分治也可以\(n \log n\)但是在洛谷上竟然比一些优秀的splay跑得慢真是见了鬼了看来还是人丑常 ...

  8. 【LOJ2586】【APIO2018】选圆圈 CDQ分治 扫描线 平衡树

    题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1,c_2,\ldots,c_n\) .我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径最大的圆,选择编号最小的.记为 \ ...

  9. bzoj 4237 稻草人 - CDQ分治 - 单调栈

    题目传送门 传送点I 传送点II 题目大意 平面上有$n$个点.问存在多少个矩形使得只有左下角和右上角有点. 考虑枚举左下角这个点.然后看一下是个什么情况: 嗯对,是个单调栈.但不可能暴力去求每个点右 ...

随机推荐

  1. sql 全站搜索

    SQL全站搜索 create proc Full_Search(@string varchar(50)) as begin declare @tbname varchar(50) declare tb ...

  2. “国家队爷”杯液体战争AI比赛!!__SymenYang

    原帖 这两天一直在搞这个AI,提供的样例更本不是我的风格啊,看不懂更不会改... 所以我自己写了一个AI的平台,现在在不断的修改AI的策略,smart样例还是很容易过的,让line的行走速度变慢一点到 ...

  3. Codeforces 825D 二分贪心

    题意:给一个 s 串和 t 串, s 串中有若干问号,问如何填充问号使得 s 串中字母可以组成最多的 t 串.输出填充后的 s 串. 思路:想了下感觉直接怼有点麻烦,要分情况:先处理已经可以组成 t ...

  4. python中的深拷贝和浅拷贝(面试题二)

    一.浅拷贝 定义:浅拷贝只是对另外一个变量的内存地址的拷贝,这两个变量指向同一个内存地址的变量值. 浅拷贝的特点: 公用一个值: 这两个变量的内存地址一样: 对其中一个变量的值改变,另外一个变量的值也 ...

  5. Spring思维课程导图——bean属性的设置

  6. asp.net MVC 给Controler传一个JSon集合,后台通过List<Model>接收

    需求情景 View层经常需要通过Ajax像后台发送一个json对象的集合,但是在后台通过List<Model>无法接收,最后只能通过妥协的方式,在后台获取一个json的字符串,然后通过Js ...

  7. [hihocoder][Offer收割]编程练习赛57

    1-偏差排列 斐波那契数列 #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h> ...

  8. Android 自己搭建一个直播系统吧

    服务端用 SRS(Simple Rtmp Server),在这里下载simple-rtmp-server需要Linux系统最好是Ubuntu,装个Ubuntu虚拟机就行了在Linux里,解压缩SRS ...

  9. jQuery——插件制作

    1.$.fn.extend:扩展 jQuery 元素集来提供新的方法(通常用来制作插件),使用时是$('选择器').方法 2.$.extend:扩展jQuery对象本身,用来在jQuery命名空间上增 ...

  10. SSH整合框架+mysql简单的实现

    SSH整合框架+mysql简单的实现 1. 框架整合原理: struts2整合Spring 两种: 一种struts2自己创建Action,自动装配Service : 一种 将Action交给Spri ...