poj 1681 Painter's Problem(高斯消元)
id=1681">http://poj.org/problem? id=1681
求最少经过的步数使得输入的矩阵全变为y。
思路:高斯消元求出自由变元。然后枚举自由变元,求出最优值。
注意依据自由变元求其它解及求最优值的方法。
#include <stdio.h>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#define LL long long
#define _LL __int64 using namespace std;
const int INF = 0x3f3f3f3f; char mapp[17][17];
int a[16*16][16*16];
int equ,var;
int x[16*16];
int free_x[16*16]; //保存自由变元,枚举求最优解
int free_num; void init()
{
memset(a,0,sizeof(a));
memset(x,0,sizeof(x));
} void debug()
{
for(int i = 0; i < equ; i++)
{
for(int j = 0; j < var+1; j++)
printf("%d",a[i][j]);
printf("\n");
}
} int Gauss()
{
int row,col,i,j;
int max_r; row = col = 0;
free_num = 0;
while(row < equ && col < var)
{
max_r = row;
for(i = row+1; i < equ; i++)
{
if( abs(a[i][col]) > abs(a[max_r][col]) )
max_r = i;
} if(max_r != row)
{
for(j = col; j < var+1; j++)
swap(a[max_r][j],a[row][j]);
}
if(a[row][col] == 0)
{
free_x[ free_num++ ] = col; //该列相应的变量是自由元
col++;
continue;
} for(i = row+1; i < equ; i++)
{
if(a[i][col] == 0) continue;
for(j = col; j < var+1; j++)
a[i][j] ^= a[row][j];
}
row++;
col++;
} for(i = row; i < equ; i++)
if(a[i][col] != 0)
return -1; //无解 if(row < var)
return var-row; //返回自由变元的数目 for(i = var-1; i >= 0; i--) //有唯一解
{
x[i] = a[i][var];
for(j = i+1; j < var; j++)
x[i] ^= (a[i][j] && x[j]);
}
return 0;
} void solve()
{
int t = Gauss();
if(t == -1)
{
printf("inf\n");
return;
}
else if(t == 0)
{
int ans = 0;
for(int i = 0; i < var; i++)
ans += x[i];
printf("%d\n",ans);
return;
}
else
{
int ans = INF;
int sta = (1<<t); //t个变量共同拥有sta个基础解
int cnt; for(int i = 0; i < sta; i++)
{
cnt = 0;
//先给自由变元赋值
for(int j = 0; j < t; j++)
{
if((1<<j) & i)
{
x[ free_x[j] ] = 1;
cnt++;
}
else
x[ free_x[j] ] = 0;
}
//求出其它的解
for(int j = var-t-1; j >= 0; j--)
{
int l,k; for(k = j; k < var; k++)
if(a[j][k])
break; //先找到该行第一个不为0的数
x[k] = a[j][var]; for(l = k+1; l < var; l++)
x[k] ^= (x[l] && a[j][l]);
cnt += x[k];
} ans = min(ans,cnt);
}
printf("%d\n",ans);
return;
}
} int main()
{
int n,test; scanf("%d",&test);
while(test--)
{
init();
scanf("%d",&n); equ = var = n*n; for(int i = 0; i < n; i++)
scanf("%s",mapp[i]); for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
if(mapp[i][j] == 'w')
a[i*n+j][var] = 1;
else a[i*n+j][var] = 0;
}
}
for(int i = 0; i < equ; i++)
{
int x = i/n;
int y = i%n; for(int j = 0; j < var; j++)
{
int xx = j/n;
int yy = j%n;
if( abs(x-xx) + abs(y-yy) <= 1)
a[i][j] = 1;
else a[i][j] = 0;
}
}
solve();
}
return 0;
}
poj 1681 Painter's Problem(高斯消元)的更多相关文章
- POJ 3185 The Water Bowls(高斯消元-枚举变元个数)
题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最 ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元)
[题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了 ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)
http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1 ...
- 【POJ】1830 开关问题(高斯消元)
http://poj.org/problem?id=1830 高斯消元无解的条件:当存在非法的左式=0而右式不等于0的情况,即为非法.这个可以在消元后,对没有使用过的方程验证是否右式不等于0(此时因为 ...
- 【POJ】2947 Widget Factory(高斯消元)
http://poj.org/problem?id=2947 各种逗啊..还好1a了.. 题意我就不说了,百度一大把. 转换为mod的方程组,即 (x[1,1]*a[1])+(x[1,2]*a[2]) ...
- 【POJ 1830】 开关问题 (高斯消元)
开关问题 Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为 ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元)题解
题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详 ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 10835 Accepted: 6 ...
- POJ 1487:Single-Player Games 浮点数高斯消元
Single-Player Games Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1287 Accepted: 36 ...
随机推荐
- oc语言的特点
oc语言的特点分为以下几个方面: 1.运行时: 2.block闭包: 3.内存管理: 4.大中枢派发: 一.运行时的基础是isa 类结构:由clang编译前端支撑. 从它衍生出以下几个特征: 1.消息 ...
- js效果之导航中英文转换
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- CentOS-1810系统DHCP服务器ISC DHCP软件配置说明
DHCP 全称Dynamic Host configuration protocol, 动态主机配置协议.是一个局域网的网络协议,使用UDP协议工作,它可以为客户机自动分配IP地址.子网掩码以及缺省网 ...
- BZOJ 4199: [Noi2015]品酒大会 后缀自动机_逆序更新
一道裸题,可以考虑自底向上去更新方案数与最大值. 没啥难的 细节........ Code: #include <cstdio> #include <algorithm> #i ...
- 原生ajax实现文件上传
视图层 JS 函数: <input type="file" onchange="sendFile()" id="up" /> ...
- hibernate N+1
http://www.cnblogs.com/sy270321/p/4769198.html
- 学习爬虫:《Python网络数据采集》中英文PDF+代码
适合爬虫入门的书籍<Python网络数据采集>,采用简洁强大的Python语言,介绍了网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导.第一部分重点介绍网络数据采集的基本原理 ...
- docker mysql 文件挂载和MySQL字符集设置
原文:docker mysql 文件挂载和MySQL字符集设置 docker run -p 3306:3306 --name mysql -v /usr/local/mysql/my.cnf:/etc ...
- hdu 2102 A计划 具体题解 (BFS+优先队列)
题目链接:pid=2102">http://acm.hdu.edu.cn/showproblem.php?pid=2102 这道题属于BFS+优先队列 開始看到四分之中的一个的AC率感 ...
- ios 将随意对象存进数据库
要将一个对象存进数据库的blob字段,最好先转为NSData.一个对象要遵守NSCoding协议,实现协议中对应的方法,才干转成NSData. NSData *statusData = [NSKeye ...