洛谷 P1171 售货员的难题
题目背景
数据有更改
题目描述
某乡有n个村庄(1<n<20),有一个售货员,他要到各个村庄去售货,各村庄之间的路程s(0<s<1000)是已知的,且A村到B村与B村到A村的路大多不同。为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,假设商店所在的村庄为1,他不知道选择什么样的路线才能使所走的路程最短。请你帮他选择一条最短的路。
输入输出格式
输入格式:
村庄数n和各村之间的路程(均是整数)。
输出格式:
最短的路程。
输入输出样例
3
0 2 1
1 0 2
2 1 0
3
说明
输入解释
3 {村庄数}
0 2 1 {村庄1到各村的路程}
1 0 2 {村庄2到各村的路程}
2 1 0 {村庄3到各村的路程}
80分的暴力:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,tot;
int vis[];
int map[][];
int minn=0x7f7f7f7f,ans=0x7f7f7f7f;
void dfs(int now,int num,int dis){
if(num==n){
ans=min(ans,dis+map[now][]);
return ;
}
if(dis+n-num-+minn>=ans) return ;
for(int i=;i<=n;i++)
if(!vis[i]){
vis[i]=;
dfs(i,num+,dis+map[now][i]);
vis[i]=;
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&map[i][j]);
for(int i=;i<=n;i++)
minn=min(minn,map[i][]);
vis[]=;
dfs(,,);
cout<<ans;
}
/*
3
0 1 2
2 0 1
1 2 0
*/
正解:
状压的思路是一样的。用 f [ i ] [ j ] 来表示 i 状态下走到第 j 个地方的最小值。这里的 i 实质上是一个二进制数,每一位是 0 是 1 即表示每个地方有无去过,但是转为十进制表示状态,这便是状态压缩的基本思想。先从 3(二进制 11) 枚举 i,每次给 i 加 2(因为第一位所表示的第一个地方是起点,不管如何都去过,因此其永远是 1)。得到可能的 i 后,枚举 i 的除第一位外每个为 1 的位,并替换 1 为 0 得到能转移到状态 i 的状态 s,具体转移过程就不多说了,总之位运算什么的详见代码。
那么如何进行优化呢?下面就是几个好办法:
1 . 首先如果规定 n = 5,即有售货员要去五个地方,枚举到 i = 3(二进制 00011) 时,我们不一定需要从最低位一直枚举到第 n 位,因为第 n 位可能在枚举 i 的很久以后才能变成 1,这之前都是 0,浪费时间复杂度,因此我们可以规定整数 k,表示目前可能为 1 的最高位的位数。当 i 超过 2 的 k 次方时,更新 k,即为 k 自增。这里 2 的 k 次方可以暂时用变量 p 表示,k 更新时用位运算给 p 向左移一位。
2 . 尽量不用 STL 的 min,虽然好用,但是宁愿用 define 手打 QAQ,另外其他联系到位运算的,比如取某数二进制位下的某位的值,也可以用 define 而不是新建什么内联函数。
- 3 . 对于状态 i,其由不同的状态 s 转移而来,因此,我们倒推 s 的时候,先确认其可行性,再枚举 l ,用 f [ s ] [ l ] 更新 f [ i ] [ j ] 的最小值。
个人认为第 2 点优化程度是最大的。下面给出代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define min(a,b) a<b?a:b
using namespace std;
int n,m,ans=0x7f7f7f7f;
int map[][],f[<<][];
int main(){
scanf("%d",&n);
m=(<<n)-;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&map[i][j]);
memset(f,0x7f,sizeof(f));
f[][]=;
for(int i=,k=,p=;i<=m;i+=){
if(i>p) p=p<<,k++;
for(int j=;j<=k;j++)
if((i>>j-)&){
int s=i^(<<j-);
for(int l=;l<j;l++)
f[i][j]=min(f[i][j],f[s][l]+map[l][j]);
for(int l=j+;l<=k;l++)
f[i][j]=min(f[i][j],f[s][l]+map[l][j]);
}
}
for(int i=;i<=n;i++)
ans=min(ans,f[m][i]+map[i][]);
cout<<ans;
}
洛谷 P1171 售货员的难题的更多相关文章
- 洛谷P1171 售货员的难题
P1171 售货员的难题 题目背景 数据有更改 题目描述 某乡有n个村庄(1<n<20),有一个售货员,他要到各个村庄去售货,各村庄之间的路程s(0<s<1000)是已知的,且 ...
- 洛谷 P1171 售货员的难题 【状压dp】
题目描述 某乡有n个村庄(1<n<20),有一个售货员,他要到各个村庄去售货,各村庄之间的路程s(0<s<1000)是已知的,且A村到B村与B村到A村的路大多不同.为了提高效率 ...
- 洛谷P1171 售货员的难题【状压DP】
题目描述 某乡有n个村庄(1 输入格式: 村庄数n和各村之间的路程(均是整数). 输出格式: 最短的路程. 输入样例: 3 0 2 1 1 0 2 2 1 0 输出样例 3 说明 输入解释 3 {村庄 ...
- 2018.07.18 洛谷P1171 售货员的难题(状压dp)
传送门 感觉是一道经典的状压dp,随便写了一发卡了卡常数开了个O(2)" role="presentation" style="position: relati ...
- P1171 售货员的难题
P1171 售货员的难题 题目描述 某乡有nn个村庄(1<n \le 201<n≤20),有一个售货员,他要到各个村庄去售货,各村庄之间的路程s(0<s<1000)s(0< ...
- 洛谷 P1379 八数码难题 Label:判重&&bfs
特别声明:紫书上抄来的代码,详见P198 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给 ...
- 【题解】P1171 售货员的难题
Tags 搜索,状压. 裸的旅行商问题 #include <stdio.h> #include <string.h> #define re register #define ...
- P1171 售货员的难题--搜索(剪枝)
题目背景 数据有更改 题目描述 某乡有nn个村庄(1<n \le 201<n≤20),有一个售货员,他要到各个村庄去售货,各村庄之间的路程s(0<s<1000)s(0<s ...
- 洛谷P1379八数码难题
题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中. 要求解的问题是:给出一种初始布局(初始状态)和目标布局(为 ...
随机推荐
- 如何设置ASP.NET站点页面运行超时
全局超时时间 服务器上如果有多个网站,希望统一设置一下超时时间,则需要设置 Machine.config 文件中的 ExecutionTimeout 属性值.Machine.config 文件位于 % ...
- JDOM,dom4j方式解析XML
<?xml version="1.0" encoding="UTF-8"?> <dataSources> <!-- 定义MySQL ...
- NOIp2018模拟赛三十八
爆〇啦~ A题C题不会写,B题头铁写正解: 随手过拍很自信,出分一看挂成零. 若要问我为什么?gtmdsubtask! 神tm就一个subtask要么0分要么100,结果我预处理少了一点当场去世 难受 ...
- BZOJ 3376 [Usaco2004 Open]Cube Stacking 方块游戏(带权并查集)
题解 #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #in ...
- Python: 自定义类对象序列化为Json串
之前已经实现了Python: Json串反序列化为自定义类对象,这次来实现了Json的序列化. 测试代码和结果如下: import Json.JsonTool class Score: math = ...
- caioj 1157 线性筛选素数
注意这道题开得非常大,有2*1e7 自己可以养成一种习惯,如果数据是很容易的话,可以自己手动输入极限数据来测试自己的程序 #include<cstdio> #include<algo ...
- 转:强制Visual Studio以管理员身份运行
Windows 8的一个既安全又蛋疼之处是UAC的行为被改变了.以往在Windows 7中,只要关闭了UAC,自己的帐号又是本机管理员组的,任何程序都会以管理员身份启动.然而,在Windows 8上, ...
- taglist安装
注意:taglist依赖于ctags,所以要先装ctags,否则taglist装了也没法用!1.首先安装ctags1)ubuntu安装sudo apt-get install exuberant-ct ...
- Getting Started with MongoDB (C# Edition)
https://docs.mongodb.com/getting-started/csharp/ 概览 Welcome to the Getting Started with MongoDB guid ...
- nyoj--1011--So Easy[II](数学几何水题)
So Easy[II] 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 这是一道基础的计算几何问题(其实这不提示大家也都看的出).问题描述如下: 给你一个N边形.且N边形 ...