斜率DP hdu 3507
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost
M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
大致题意:要打印一长串词语,每个词语有一个对应的打印费用Ci,要给词语分行,一行的总费用记为
,M是给定的常数
要求计算一种分行方案使得总费用最小。
数据规模50万。
分析:首先可以想到枚举上一次断行处,这样可以得到最初的状态转移方程:
,复杂度为O(n^2)。
观察一下数据规模为50万,需要优化。
主要思路是考虑淘汰肯定对最优答案没有贡献的点。
将状态转移方程展开:
(注:公式和图来自BIG YAO学长)

移项可得:


观察到蓝色字体部分只与j有关,绿色字体对给定的i为常量,红色字体部分取最小的时候dp[i]取最小。
将蓝色字体视为y(j),sum[j]视为x(j),问题就转化为对平面上无数个点(x,y),对每一个i,找出一个最优点(x0,y0),使得一条通过该点,斜率为k=2sum[i]的直线的截距最小。
放张图表现一下优化情况:

维护一个队列,即为下凸折线上点的队列,每次寻找最优的j的时候只在队列里的点找。(注意取得最优点的时候相邻的两根折线的斜率对于k=2sum[i]一大一小)
以下具体讨论怎么实现:
i不断向前推进,每次循环做两件事情:
1,找出对于dp[i]最优的上一个断行处j
如果队列上该点i和他后面的那个店形成的斜率小于k=2*sum[i]就头指针+1。
注意由于随i的递增,k=2*sum[i]必然递增,所以出队的点就不需要回来了
2,把i放入队列后就不再需要的点淘汰掉:

一旦出现3个点呈这样,即可淘汰点2,因为:直线经过点4的截距必然小于经过点2的截距,而经过点4的截距必然小于经过点1或点3的截距。
从而经过点2的截距必然小于小1或点3的截距,点2不可能为最优点,可淘汰。

然后把i放入队列(注意sum[i]为严格递增的,所以i个点中最后一个点必然在“外围”,不会被淘汰)
#include<cstdio>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;++i)
using namespace std;
const int MAXN=;
long long int dp[MAXN],q[MAXN],sum[MAXN];
int n,m;
inline long long int getdp(int i,int j)
{
return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
}
inline long long int gety(int x,int y)
{
return dp[x]+sum[x]*sum[x]-dp[y]-sum[y]*sum[y];
}
inline long long int getx(int x,int y)
{
return *sum[x]-*sum[y];
}
int main()
{
// freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&m)==)
{
sum[]=;
rep(i,,n)
{
scanf("%lld",&sum[i]);
sum[i]=sum[i-]+sum[i];
}
dp[]=;
int head,tail;
tail=;
head=;
q[tail]=; //虚拟制造一个点0,若0点最优代表把所有词语分成一行最优
rep(i,,n)
{
while(head+<=tail&&(gety(q[head+],q[head])<=sum[i]*getx(q[head+],q[head]))) head++; //寻找对于i最好的上一次分行的截止点
dp[i]=getdp(i,q[head]);
while(head+<=tail&&gety(i,q[tail])*getx(q[tail],q[tail-])<=gety(q[tail],q[tail-])*getx(i,q[tail])) tail--; //i放入队列后需要淘汰的点
q[++tail]=i; //把i放入队列
}
printf("%lld\n",dp[n]);
}
return ;
}
斜率DP hdu 3507的更多相关文章
- hdu 3507 斜率dp
不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...
- hdu 3507 Print Article(斜率优化DP)
题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...
- 斜率dp A - Print Article HDU - 3507
A - Print Article HDU - 3507 今天刚刚学习了一下斜率dp,感觉还ok,主要就是要推这个斜率,然后利用数据结构来优化. 推荐两篇写的比较好的博客,https://www.cn ...
- HDU 3507 Print Article(斜率优化DP)
题目链接 题意 : 一篇文章有n个单词,如果每行打印k个单词,那这行的花费是,问你怎么安排能够得到最小花费,输出最小花费. 思路 : 一开始想的简单了以为是背包,后来才知道是斜率优化DP,然后看了网上 ...
- HDU 3507 单调队列 斜率优化
斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...
- B - Lawrence HDU - 2829 斜率dp dp转移方程不好写
B - Lawrence HDU - 2829 这个题目我觉得很难,难在这个dp方程不会写. 看了网上的题解,看了很久才理解这个dp转移方程 dp[i][j] 表示前面1~j 位并且以 j 结尾分成了 ...
- HDU 3480 - Division - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- HDU 2829 - Lawrence - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 T. E. Lawrence was a controversial figure during ...
- HDU 2993 - MAX Average Problem - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 Consider a simple sequence which only contains p ...
随机推荐
- java定时任务的实现方式
在本文里,我会给大家介绍2种不同的实现方法:1.普通thread实现2.ScheduledExecutorService实现 一:实现普通的thread: 首先是创建thread然后就是一直让whil ...
- Java 9 揭秘(13. Collection API 更新)
Tips 做一个终身学习的人. 在本章中,主要介绍以下内容: 在JDK 9之前如何创建了不可变的list,set和map以及使用它们的问题. 如何使用JDK 9中的List接口的of()静态工厂方法创 ...
- Java字符串格式化记录
最近打log的时候用到了字符串的格式化. Java中String格式化和C语言的很类似.把情况都列出来,以后好查询. public static void main(String[] args) { ...
- Python判断文件是否存在的三种方法
通常在读写文件之前,需要判断文件或目录是否存在,不然某些处理方法可能会使程序出错.所以最好在做任何操作之前,先判断文件是否存在. 这里将介绍三种判断文件或文件夹是否存在的方法,分别使用os模块.Try ...
- LINUX下的远端主机登入 校园网络注册 网络数据包转发和捕获
第一部分:LINUX 下的远端主机登入和校园网注册 校园网内目的主机远程管理登入程序 本程序为校园网内远程登入,管理功能,该程序分服务器端和客户端两部分:服务器端为remote_server_udp. ...
- phpstudy连接SQL Server 2008数据库 以及 php使用sql server出现乱码解决方式
开始也尝试自己配置php安装环境,找到一个详细的百度经验http://jingyan.baidu.com/article/154b46315242b328ca8f4101.html,前面有问题也一一去 ...
- Python学习——(1)Centos安装Flask
一.环境 [root@localhost myproject]# cat /proc/version centos6.5 Linux version 2.6.32-642.11.1.el6.i686 ...
- ffmpeg编解码视频导致噪声增大的一种解决方法
一.前言 ffmpeg在视音频编解码领域算是一个比较成熟的解决方案了.公司的一款视频编辑软件正是基于ffmpeg做了二次封装,并在此基础上进行音视频的编解码处理.然而,在观察编码后的视频质量时,发现图 ...
- Open-Falcon第三步安装Agent (小米开源互联网企业级监控系统)
安装Agent 每台机器上,都需要部署agent,agent会自动采集预先定义的各种采集项,每隔60秒,push到transfer. cd $WORKSPACE/agent/ mv cfg.examp ...
- python实战第一天-环境的安装
操作系统 Ubuntu 15.10 IDE & editor JetBrains PyCharm 5.0.2 ipython3 Python版本 python-3.4.3 安装Python s ...