TensorFlow conv2d实现卷积
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
除去name参数用以指定该操作的name,与方法有关的一共五个参数:
第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一
第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,],要求类型与参数input相同,有一个地方需要注意,第三维卷积核的宽度,图像通道数,卷积核个数,就是参数input的第四维in_channels
第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4
第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(后面会介绍)
第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true
结果返回一个Tensor,这个输出,就是我们常说的feature map
import tensorflow as tf input = tf.Variable([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[8.0, 7.0, 6.0, 5.0],
[4.0, 3.0, 2.0, 1.0]])
input=tf.reshape(input,[1,4,4,1])
filter = tf.Variable(tf.random_normal([2,2,1,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
init=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(input))
print(sess.run(op)) sess.close()
s输出结果:
[[[[ 1.]
[ 2.]
[ 3.]
[ 4.]]
[[ 5.]
[ 6.]
[ 7.]
[ 8.]]
[[ 8.]
[ 7.]
[ 6.]
[ 5.]]
[[ 4.]
[ 3.]
[ 2.]
[ 1.]]]]
[[[[ -5.89250851]
[ -7.98477077]
[-10.077034 ]]
[[-12.00638008]
[-12.8220768 ]
[-13.63777256]]
[[-12.93785667]
[-10.84559441]
[ -8.75333118]]]]
参考:http://blog.csdn.net/mao_xiao_feng/article/details/53444333
TensorFlow conv2d实现卷积的更多相关文章
- tf.nn.conv2d。卷积函数
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- tensorflow中的卷积和池化层(一)
在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁. ...
- TensorFlow 中的卷积网络
TensorFlow 中的卷积网络 是时候看一下 TensorFlow 中的卷积神经网络的例子了. 网络的结构跟经典的 CNNs 结构一样,是卷积层,最大池化层和全链接层的混合. 这里你看到的代码与你 ...
- 关于tensorflow conv2d卷积备忘的一点理解
**************input************** [[[[-0.36166722 0.04847232 1.20818889 -0.1794038 -0.53244466] [ ...
- TensorFlow conv2d原理及实践
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None) 官方 ...
- 学习Tensorflow,反卷积
在深度学习网络结构中,各个层的类别可以分为这几种:卷积层,全连接层,relu层,pool层和反卷积层等.目前,在像素级估计和端对端学习问题中,全卷积网络展现了他的优势,里面有个很重要的层,将卷积后的f ...
- 学习笔记TF057:TensorFlow MNIST,卷积神经网络、循环神经网络、无监督学习
MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .Ten ...
- TensorFlow中的卷积函数
前言 最近尝试看TensorFlow中Slim模块的代码,看的比较郁闷,所以试着写点小的代码,动手验证相关的操作,以增加直观性. 卷积函数 slim模块的conv2d函数,是二维卷积接口,顺着源代码可 ...
- tf.nn.conv2d实现卷积的过程
#coding=utf-8 import tensorflow as tf #case 2 input = tf.Variable(tf.round(10 * tf.random_normal([1, ...
随机推荐
- (转)C++——std::string类的引用计数
1.概念 Scott Meyers在<More Effective C++>中举了个例子,不知你是否还记得?在你还在上学的时候,你的父母要你不要看电视,而去复习功课,于是你把自己关在房间里 ...
- Pycon 2017: Python可视化库大全
本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...
- linq中给字段添加别名
linq 是我们在查询中经常回用到的一种形式,比如我们创建一个类,然后List<添加> 并绑定到表格中 public class Modeltest { string id; public ...
- php的数据访问和封装运用
php数据访问: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww ...
- SQLServer数据库操作
--创建数据库create database 在线考试系统on(name=在线考试系统_DATA,filename='E:\DB\在线考试系统_DATA.mdf',size=5mb,maxsize=2 ...
- 2017最新xcode打包APP详细图文
网上的xcode打包ipa教程大多太旧而且又不完整,所以整理了一个最新的完整详细的xcode打包APP的图文教程分享给小白到大神路上前进的你我. xcode打包IPA包之前先申请iOS证书,然后导入证 ...
- jqueryui autocomplete的使用与angular配合的小坑
刚开始在做搜索联想功能时,使用了jquery.autocomplete.js插件,当并不理想,首先插件老旧,也只适合老版的jquery.其次在数组中只能联想到首字母一样的数据,比如[12,23,222 ...
- 数据结构与算法(c++)——查找二叉树与中序遍历
查找树ADT--查找二叉树 定义:对于树中的每个节点X,它的左子树中的所有项的值小于X中的项,而它的右子树中所有项的值大于X中的项. 现在给出字段和方法定义(BinarySearchTree.h) # ...
- Linux下memcached安装与连接
前几天技术总监要我在项目中加一个memcached,以前也从来没有配置过,所以就去网上找教程,最终折腾成功.比较坑的就是sasl协议那里. 由于memcached依赖libevents,所以要下载两个 ...
- 「七天自制PHP框架」第四天:模型关联
往期回顾:「七天自制PHP框架」第三天:PHP实现的设计模式,点击此处 原文地址:http://www.cnblogs.com/sweng/p/6624845.html,欢迎关注:编程老头 前阵子在网 ...