本文记录一下dijkstra算法的实现,图用邻接矩阵表示,假设图为无向图。而且连通,有向图,不连通图的做法相似。

算法简述:

  1. 首先确定“单源”的源。假设是第0个顶点。

  2. 维护三个数组dist[], color[], path[]。设其下标分别为0…i…n-1:

      dist[] 表示源点到顶点i的最短距离,在初始化时,假设源点到顶点i有路径,则初始化为路径的权重。否则初始化为INT_MAX。

      color[] 数组事实上表示两个集合,即color[i]值为1的集合表示已经确定最短路径的点的集合,color[i]值为0表示没有确定最短路径的点的集合。初始化为将源点的color设置为1,其余点设置为0。

      path[]数组存储到顶点i的路径,假设path[i]=3,path[3]=2,paht[2]=0,则这条最短路径是0->2->3->i,与数组给出的顺序是逆序。

  3. 依次从dist[]数组中选一个最小的dist值,假设顶点的坐标为index,这个dist值即为终于确定的最短距离的点,更新这个点的color值为1。以下一个操作是dijkstra算法的重点。也仅仅有这么一个重点操作,即:在没有确定最短距离的集合中(即color值为0的点的集合),假设源点到index的距离,加上index到这些点的距离小于原来的dist值,则更新dist值,同一时候更新path值。

  4. 反复第3个操作,直到color值为0的集合为空。

以下给出c语言实现代码,方法都出了凝视,这里不再说明, 假设不足之处请提出(使用的默认的图例如以下):

#include <stdlib.h>
#include <stdio.h>
#include <limits.h> int n;
int source = 0; //求从第0个节点到其它节点的最短路径
int* dist;
int* path;
int* color; //颜色为1说明已经找到最短路径。为-1说明没找到最短路径 //获得默认的图,即上图所看到的。使用邻接矩阵表示
int** get_graph(){
int** matrix;
int i,j;
int start,end,weight; printf("input vertex num:\n");
scanf("%d",&n); matrix = (int**)malloc(sizeof(int*)*n); for(i=0;i<n;i++){
matrix[i] = (int*)malloc(sizeof(int)*n);
for(j=0;j<n;j++){
if(i!=j)
matrix[i][j] = INT_MAX;
else
matrix[i][j] = 0;
}
} printf("input start end weight, stop by -1\n"); for(;;){
scanf("%d",&start);
if(start==-1){
break;
}
scanf("%d %d",&end,&weight);
matrix[start][end] = weight;
matrix[end][start] = weight;
}
return matrix;
} //使用迪杰斯特拉算法求单源最短路径
void single_source_shortest_path(int** matrix,int source){ int i,j,index,min; dist = (int*)malloc(sizeof(int)*n);
color = (int*)malloc(sizeof(int)*n);
path = (int*)malloc(sizeof(int)*n); //初始化最短路径:
//直接相连的初始化为权重,不直接相连的初始化为INT_MAX
for(i=0;i<n;i++){
dist[i] = matrix[source][i];
color[i] = 0;
if(i!=source && dist[i]!=INT_MAX){
path[i] = source;
}else{
path[i] = -1;
}
} color[source] = 1;
path[source] = 0; //找一个从源点到其它节点最短的路径
for(j=0;j<n;j++){
min = INT_MAX;
index = -1;
for(i=0;i<n;i++){
if(!color[i] && dist[i]<min){
index = i;
min = dist[i];
}
} if(index==-1){ //全部定点的终于距离都确定
break;
} color[index] = 1; //标记为已经确定最短距离的定点 //接下来更新到每一个未确定最短距离的定点的距离
//假设源点到刚刚加入的节点的最短距离+刚刚加入的节点的距离到未确定最短距离的定点的距离 < 源最短距离,则更新
for(i=0;i<n;i++){
if(!color[i] && matrix[index][i]!=INT_MAX && dist[index]+matrix[index][i]<dist[i]){
dist[i] = dist[index]+matrix[index][i];
path[i] = index;
}
}
}
} int main(){ int** matrix = get_graph();
int i,t; single_source_shortest_path(matrix,source); printf("\n");
for(i=0;i<n;i++){
printf("%d: %d,and the path is(inverse order): %d ",i,dist[i],i);
t = path[i];
while(1){
printf(" %d ",t);
if(t==0){
break;
}
t = path[t];
}
printf("\n");
} printf("\n");
return EXIT_SUCCESS;
}

执行结果例如以下:

单源最短路径 dijkstra算法实现的更多相关文章

  1. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  2. 单源最短路径——dijkstra算法

    dijkstra算法与prim算法的区别   1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的 ...

  3. 单源最短路径——Dijkstra算法学习

    每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好 ...

  4. 单源最短路径-Dijkstra算法

    1.算法标签 贪心 2.算法描述 具体的算法描述网上有好多,我觉得莫过于直接wiki,只说明一些我之前比较迷惑的. 对于Dijkstra算法,最重要的是维护以下几个数据结构: 顶点集合S : 表示已经 ...

  5. [数据结构与算法-15]单源最短路径(Dijkstra+SPFA)

    单源最短路径 问题描述 分别求出从起点到其他所有点的最短路径,这次主要介绍两种算法,Dijkstra和SPFA.若无负权优先Dijkstra算法,存在负权选择SPFA算法. Dijkstra算法 非负 ...

  6. matlab练习程序(单源最短路径Dijkstra)

    图的相关算法也算是自己的一个软肋了,当年没选修图论也是一大遗憾. 图像处理中,也有使用图论算法作为基础的相关算法,比如图割,这个算法就需要求最大流.最小割.所以熟悉一下图论算法对于图像处理还是很有帮助 ...

  7. 单源最短路径---Bellman-Ford算法

    传送门: Dijkstra Bellman-Ford SPFA Floyd 1.Dijkstra算法的局限性 像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = ...

  8. 洛谷P3371单源最短路径Dijkstra版(链式前向星处理)

    首先讲解一下链式前向星是什么.简单的来说就是用一个数组(用结构体来表示多个量)来存一张图,每一条边的出结点的编号都指向这条边同一出结点的另一个编号(怎么这么的绕) 如下面的程序就是存链式前向星.(不用 ...

  9. 单源最短路径Dijkstra和优先级算法

    百度百科:迪杰斯特拉算法. 代码实现如下: import java.util.Comparator; import java.util.PriorityQueue; import java.util. ...

随机推荐

  1. 【转载】以Java的视角来聊聊SQL注入

    以Java的视角来聊聊SQL注入 原创 2017-08-08 javatiku Java面试那些事儿 在大二就接触过sql注入,之前一直在学习windows逆向技术,认为web安全以后不是自己的从业方 ...

  2. display:none,float小秘密

    一个元素不管是块元素还是行内元素   在添加了 display:none 之后,就变成了不可见的块元素,可以给他添加长度和高度   在float之后内联元素也会隐性成为  inline-block   ...

  3. 关于java数据库章节connection连接不成功的时候!!!

    无图,因为忘了截图.但是网上很多说法: 异常那个地方最先是说连接失败的,原因很简单,没有安装Mysql数据库!!!安装了之后出示没有密码,所以程序里面的地方也不要有密码. 然后运行就成功了.相关的安装 ...

  4. 使用Jquery.js框架和CSS3实现3D相册的制作

    有关3D相册的制作主要包括以下几个知识点: 1.有关图片的位置摆放,也就是一个相对定位绝对定位的使用: 2.有关CSS3中transform属性的使用(transform-style: preserv ...

  5. STM32基础问题分析——PWM配置

    STM32基础问题分析--PWM配置 在使用STM32F103产生固定频率.固定占空比的PWM波时,虽然有官方以及众多开发板提供的例程,但是关于有点问题并没有说的很清晰,并且<STM32F10X ...

  6. Celery 源码解析七:Worker 之间的交互

    前面对于 Celery 的分布式处理已经做了一些介绍,例如第五章的 远程控制 和第六章的 Event机制,但是,我认为这些分布式都比较简单,并没有体现出多实例之间的协同作用,所以,今天就来点更加复杂的 ...

  7. Android Weekly Notes Issue #284

    November 19th, 2017 Android Weekly Issue #284 本期内容丰富.有趣的有如何搭建真机测试平台,Proguard里面各类keep的区别,如何运行时获得泛型类型, ...

  8. Unity与iOS原生代码之间的相互调用

    1.Unity调用iOS: 1.1.在Unity C#中: [ DllImport( "__Internal" )] private static extern int _show ...

  9. javascript图片隐写术,感觉可以用它来干点有想法的事情

    1.什么是图片隐写术? 权威的wiki说法是“隐写术是一门关于信息隐藏的技巧与科学,所谓信息隐藏指的是不让除预期的接收者之外的任何人知晓信息的传递事件或者信息的内容.”,图片隐写术简而言之就是利用图片 ...

  10. 记一次改造react脚手架的过程

    公司突然组织需要重新搭建一个基于node的论坛系统,前端采用react,上网找了一些脚手架,或多或少不能满足自己的需求,最终在基于YeoMan的react脚手架generator-react-webp ...