研究生二年级实习(2010年5月)开始,一直跟着王益(yiwang)和靳志辉(rickjin)学习LDA,包括对算法的理解、并行化和应用等等。毕业后进入了腾讯公司,也一直在从事相关工作,后边还在yiwang带领下,与孙振龙、严浩等一起实现了一套大规模并行的LDA训练系统——Peacock。受rick影响,决定把自己对LDA工程实践方面的一些理解整理出来,分享给大家,其中可能有一些疏漏和错误,还请批评指正。

Rickjin在《LDA数学八卦》[1]一文中已经对LDA的数学模型以及基本算法介绍得比较充分了,但是在工程实践上,我们还是有一些需要注意的问题,比如:

  • 怎样验证算法实现的正确性?
  • 怎样加速Gibbs sampling?
  • 在线推断(inference)时,需要注意些什么问题?
  • 超参数对模型的影响以及怎样做超参数优化?

本文将涉及以上内容,不包括:LDA并行化和应用,后续会在文章《LDA工程实践之架构篇》和《LDA工程实践之应用篇》中进行介绍。

为了方便大家理解,本文所有数学符号和 [2] 保持一致,具体见表 1。


Table 1: Symbols
1 算法实现正确性验证

在实现机器学习算法的时候,由于数值算法特有的收敛性问题,让这项本来相对简单的工作增加了难度。这其中的典型是多层次神经网络的优化算法——反向传播(Back Propagation,BP)算法,由于神经网络的强大表述能力,即使实现有误,在简单数据实验上,我们可能也发现不了问题。LDA算法的实现较BP简单,工作中我们常采用如下几个方法进行算法正确性的先期验证。

1.1 Toy data实验
Figure 1: KMeans toy data

在实现算法之前,toy data的准备必不可少。Toy data需要尽量简单——纬度低、数据量少,能表述清楚问题即可,这样方便我们实现算法时进行单元测试和调试。比如做KMeans聚类,可以采用2D高斯混合模型生成toy data(见图1,类别数为3)。LDA实现过程中,我们构造的toy data类似表 2(假设模型主题数 K=2),此时模型训练过程中的每一个迭代以及最终模型输出都是可预测的(表 2 数据收敛后,Doc1-3的词赋予的主题应该都是1,Doc4-6的词赋予的主题应该都是2,或者二者主题互换)。


Table 1: LDA toy data

随机算法在开发调试过程中,稳定不变的随机数序列是非常重要的,这样有利于定位问题。获取稳定不变的随机数非常简单,只需要我们额外提供一个伪随机数种子的命令行参数。

1.2 合成实验

算法包最终实现,toy data实验符合预期,此时如果我们想进一步验证LDA算法的效果呢?考虑到LDA是一种生成模型[3],Griffiths等人[4]在论文中采用合成实验来演示模型的效果,当然,这也可以作为算法正确性的验证。


 



Figure 2: Griffiths Ground truth


Figure 3: Griffiths Synthesis Experiment [4]


Figure 4: Ground truth

Φ


Figure 5: Estimated

合成实验过程中需要用到Dirichlet采样,一般的标准库中没有提供:对c/c++来说,gsl [5] 是不错的选择;对python来说,numpy [6] 有提供实现。

具体到LDA模型,Perplexity计算公式如Eq. 6。训练过程中,计算Perplexity严谨的做法应该使用当前迭代获得的模型在线Inference测试集文档,得到文档的的主题分布后代入Eq. 6,在第三章我们将看到,在线Inference新文档的主题分布也满足
Eq. 3。当然,工程上为了节省计算资源,我们通常就在训练集上计算当前迭代的Perplexity。

LDA模型训练过程中,随着迭代的进行,模型的Perplexity曲线会逐渐收敛。因此,我们通常会根据训练过程中模型的Perplexity曲线是否收敛来判定模型是否收敛。Perplexity曲线收敛性也从侧面可以证明算法实现的正确性。图 6 给出了一次模型训练过程的LogLikelihood和Perplexity曲线(主题数 K=10,000,迭代130左右的曲线突变将在第四章给出解释)。


Figure 6: LogLikelihood and perplexity curve


参考文献

LDA工程实践之算法篇之(一)算法实现正确性验证(转)的更多相关文章

  1. 【算法篇】Bitmap 算法

    首先,什么是Bitmap算法(位图算法)呢? 一:定义: Bit map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素.使用Bit为用来存储数据的单位, 可以大大节省存储空间. ...

  2. panguan(判官):一个自研的任务执行引擎的工程实践

    来某厂接近半年了,几乎没写过C++代码,说实话还真的有点手生.最近刚好有一个需求,然而我感觉我也没有办法用C++以外的语言去实现它.于是还是花了几天时间用C++完成编码,这是一个简单的任务执行引擎,它 ...

  3. webpack 从入门到工程实践

    from:https://www.jianshu.com/p/9349c30a6b3e?utm_campaign=maleskine&utm_content=note&utm_medi ...

  4. 深度学习word2vec笔记之算法篇

    深度学习word2vec笔记之算法篇 声明:  本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料 ...

  5. 我的TDD实践---SVN架设篇

    我的TDD实践---SVN架设篇 “我的TDD实践”系列之SVN架设 写在前面: 我的TDD实践这几篇文章主要是围绕测试驱动开发所展开的,其中涵盖了一小部分测试理论,更多的则是关注工具的使用及环境的搭 ...

  6. 实现求解线性方程(矩阵、高斯消去法)------c++程序设计原理与实践(进阶篇)

    步骤: 其中A是一个n*n的系数方阵 向量x和b分别是未知数和常量向量: 这个系统可能有0个.1个或者无穷多个解,这取决于系数矩阵A和向量b.求解线性系统的方法有很多,这里使用一种经典的方法——高斯消 ...

  7. 编码原则实例------c++程序设计原理与实践(进阶篇)

    编码原则: 一般原则 预处理原则 命名和布局原则 类原则 函数和表达式原则 硬实时原则 关键系统原则 (硬实时原则.关键系统原则仅用于硬实时和关键系统程序设计) (严格原则都用一个大写字母R及其编号标 ...

  8. Spring实践系列-入门篇(一)

    本文主要介绍了在本地搭建并运行一个Spring应用,演示了Spring依赖注入的特性 1 环境搭建 1.1 Maven依赖 目前只用到依赖注入的功能,故以下三个包已满足使用. <properti ...

  9. Appium+python自动化(四十二)-Appium自动化测试框架综合实践- 寿终正寝完结篇(超详解)

    1.简介 按照上一篇的计划,今天给小伙伴们分享执行测试用例,生成测试报告,以及自动化平台.今天这篇分享讲解完.Appium自动化测试框架就要告一段落了. 2.执行测试用例&报告生成 测试报告, ...

随机推荐

  1. carry-检查数据接口返回数据合法性

    问题背景: 在测试&部署监控过程中,我们常常会遇到外部接口返回数据不靠谱的时候.最常见的场合是从某个http获取如json和xml等结构化的结果,进行解析并处理,在这时候出现以下这几种常见类型 ...

  2. 纯css实现table表格固定列和表头,中间横向滚动的思路-附案例

    最近做的后台管理系统要处理大量的表格 原项目是采用的for循环加拼接字符串的方式实现;导致js代码一大堆;各种单引号和双引号的嵌套;让人头疼;遂引入vue.js;用v-for做模板渲染;工作量顿时减轻 ...

  3. jquery获取json对象中的key小技巧

    jquery获取json对象中的key小技巧 比如有一个json var json = {"name" : "Tom", "age" : 1 ...

  4. 使用 PUTTY 操作 Google Cloud

    目的: 使用putty连接Google Cloud 实例. 总说: 首先要用  PuTTYgen生成 private key  和 public key, 之后 登录Google Cloud 将生成的 ...

  5. sql in 和 exist的区别

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp41 select * from A where id in(select ...

  6. Windows环境下最新OpenCV和Contribute代码的联合编译

    解决这个问题,目的在于获得并使用最新的完全版本的代码,主要方法是对CMake能够熟练使用,并且对编译等基础支持有所了解. 一.工具的准备 1 tortoisegit www.tortoisegit.o ...

  7. springboot 入门二- 读取配置信息一

    在上篇入门中简单介绍下springboot启动使用了大量的默认配置,在实际开发过程中,经常需要启动多个服务,那端口如何手动修改呢? 此篇就是简单介绍相关的配置文件信息. Spring Boot允许外部 ...

  8. hdu 3342 拓扑排序 水

    好久没切题  先上水题! 拓扑排序! 代码: #include<iostream> #include<cstdio> #include<cstring> using ...

  9. poj3463 最短路和比最短路长1的路径数

    这题需要很好的理解Dij. 在Dij的基础上,每个点多一个次短路的长度和数量进行控制. 那么在队列中,最短路控制时出现n次,次短路控制出现n次.注意松弛条件中val值和最短路.次短路的关系. 这题需要 ...

  10. Windows10 VS2015下分别编译libevent 32位和64位库

    Libevnt 在Windows10 VS2015下分别编译32位和64位库 直接上王道 libevent代码地址: https://github.com/libevent/libevent git ...