Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
题意:

给出一个矩形抽屉,然后有n个板子放在其中,连接上下底。给出m个玩具的坐标(视作点), 
问n+1个区间内,每个区间中有多少玩具。

思路:
首先给出的木板是从左往右排序过的,如果一个点在某个板子x左边,一定会在板子y>x 左边,所以满足单调性,二分。 
然后是判断点在直线左边,此处用的是向量p-l与向量u-l之间的关系,若叉乘值小于0,表示点p在直线l-u左边,反之则在右边。

详细请见:http://blog.csdn.net/u013557725/article/details/40146311

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
using namespace std;
struct point
{
int x,y;
point(){}
point(int _x,int _y)
{
x=_x;y=_y;
}
point operator - (const point &b) const
{
return point(x-b.x,y-b.y);
}
}u[],l[];
int n,m,x1,y1,x2,y2,ans[];
int cross(point a,point b)//计算叉乘
{
return a.x*b.y-b.x*a.y;
}
int main()
{
while (scanf("%d",&n)!=EOF&&n!=)
{
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
memset(ans,,sizeof(ans));
for (int i=;i<n;i++)
{
int uu,ll;
scanf("%d%d",&uu,&ll);
u[i]=point(uu,y1);
l[i]=point(ll,y2);//用point储存直线的端点
}
for (int i=;i<m;i++)
{
point p;
scanf("%d%d",&p.x,&p.y);
int le=,ri=n,t=n;//因二分无法判断最右边的情况,所以t先赋值为n
while (le<=ri)
{
int mid=(le+ri)/;
if (cross(p-l[mid],u[mid]-l[mid])<=)//叉乘小于0,p在直线ui-li左边,查找左区间,否则查找右区间
{
t=mid;
ri=mid-;
}
else le=mid+;
}
++ans[t];
}
for (int i=;i<=n;i++)
{
printf("%d: %d\n",i,ans[i]);
}
printf("\n");
}
return ;
}

POJ2318 TOYS(叉积判断点与直线的关系+二分)的更多相关文章

  1. poj2318(叉积判断点在直线左右+二分)

    题目链接:https://vjudge.net/problem/POJ-2318 题意:有n条线将矩形分成n+1块,m个点落在矩形内,求每一块点的个数. 思路: 最近开始肝计算几何,之前的几何题基本处 ...

  2. POJ2318 TOYS[叉积 二分]

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 14433   Accepted: 6998 Description ...

  3. POJ2318TOYS(叉积判断点与直线位置)

    题目链接 题意:一个矩形被分成了n + 1块,然后给出m个点,求每个点会落在哪一块中,输出每块的点的个数 就是判断 点与直线的位置,点在直线的逆时针方向叉积 < 0,点在直线的顺时针方向叉积 & ...

  4. POJ1269:Intersecting Lines(判断两条直线的关系)

    题目:POJ1269 题意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:直线相交判断.如果相交求交点. 首先先判断是否共线,之后判断是否平行,如果都不是就直接求交点 ...

  5. Intersecting Lines--POJ1269(判断两条直线的关系 && 求两条直线的交点)

    http://poj.org/problem?id=1269 我今天才知道原来标准的浮点输出用%.2f   并不是%.2lf  所以wa了好几次 题目大意:   就给你两个线段 然后求这两个线段所在的 ...

  6. POJ 2318 叉积判断点与直线位置

    TOYS   Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom ...

  7. POJ-2318 TOYS 计算几何 判断点在线段的位置

    题目链接:https://cn.vjudge.net/problem/POJ-2318 题意 在一个矩形内,给出n-1条线段,把矩形分成n快四边形 问某些点在那个四边形内 思路 二分+判断点与位置关系 ...

  8. POJ2318【判断点在直线哪一侧+二分查找区间】

    题目大意:给定一个矩形和一些线段,线段将矩形分割为从左至右的若干部分,之后给出一些玩具的坐标,求每个部分中玩具的数量 #include<cstdio> #include<cstdli ...

  9. POJ2398【判断点在直线哪一侧+二分查找区间】

    题意:同POJ2318 #include<algorithm> #include<cstdio> #include<cstdlib> #include<cst ...

随机推荐

  1. 使用Pano2VR 切割图片

    图片转换好之后得到一组立方体面片.

  2. Opengl4.5 中文手册—G

    索引 A      B    C      D     E     F     G H      I     J      K     L     M     N O      P    Q      ...

  3. 使用百度ueditor的插件使得代码高亮显示

    一.在show.html模板中,引入ueditor的插件,并调用 <link rel="stylesheet" href="__ROOT__/Data/uedito ...

  4. Sublimetext3安装Emmet插件步骤

    看清楚哦~~这是Sublime text 3不是2的版本,两者的安装还是有区别的,下面的方法是我感觉比较简单的,其他的要命令什么的感觉太复杂了,经测试是OK的. 先关闭Sublime text 3: ...

  5. 使用Xshell+Xmanager远程监控jvisualvm

    使用jvisualvm的remote方式监控服务器端jvisualvm时,不是很方便,因此通过local方式,应该是正路. 一.服务器端(Linux,最小安装模式,没有图形界面) 1.安装xauth ...

  6. SVN初体验

    呐,部门领导要求今后项目部分内容要实行版本控制,因此有机会深入接触下SVN这门功课 ---------------------------------------------------------- ...

  7. 一个高性能、轻量级的分布式内存队列系统--beanstalk

    Beanstalk是一个高性能.轻量级的.分布式的.内存型的消息队列系统.最初设计的目的是想通过后台异步执行耗时的任务来降低高容量Web应用系统的页面访问延迟.其实Beanstalkd是典型的类Mem ...

  8. 自签名的https证书是不安全的

    一.项目内的需求 我们做的app都是企业级的应用,而企业级的应用的下载需要遵循itms协议,itms协议下需要https链接,这就需要你的服务器支持https的协议,该协议需要申请SSL证书,我们测试 ...

  9. js根据时间戳倒计时

    今天有个需求,要在页面上做当前时间距离下个月1号的倒计时.在网上找了很多案例也试了很多,大部分都是获取本地当前时间,然后设置结束时间进行计算,然后倒计时.但是有几个问题: 1.如果本地时间和服务器时间 ...

  10. Jquery仿京东分类导航层简单实现

    <script src="/js/jquery-1.11.1.min.js" type="text/javascript"></script& ...