Problem Description
Fill the
following 8 circles with digits 1~8,with each number exactly once .
Conntcted circles cannot be filled with two consecutive
numbers.

There are 17 pairs of connected cicles:

A-B , A-C, A-D

B-C, B-E, B-F

C-D, C-E, C-F, C-G

D-F, D-G

E-F, E-H

F-G, F-H

G-H

Eight Puzzle" title="Another Eight Puzzle">


Filling G with 1 and D with 2 (or G with 2 and D with 1) is illegal
since G and D are connected and 1 and 2 are consecutive .However
,filling A with 8 and B with 1 is legal since 8 and 1 are not
consecutive .



In this problems,some circles are already filled,your tast is to
fill the remaining circles to obtain a solution (if
possivle).
Input
The first line
contains a single integer T(1≤T≤10),the number of test cases. Each
test case is a single line containing 8 integers 0~8,the numbers in
circle A~H.0 indicates an empty circle.


Output
For each test
case ,print the case number and the solution in the same format as
the input . if there is no solution ,print “No answer”.If there
more than one solution,print “Not unique”.
Sample Input
3
7 3 1 4 5 8
0 0
7 0 0 0 0 0
0 0
1 0 0 0 0 0
0 0
Sample Output
Case 1: 7 3
1 4 5 8 6 2
Case 2: Not
unique
Case 3: No
answer
题意:如图所示,有A-H 8个圆圈,关系如图所示,给出各个圆圈内的数,0代表你要填的数,让你求要多少种填法;
解题思路:刚看到时,以为和相邻两个数的和是素数那个差不多,后来写的时候,有点不一样那个,从第一位开始搜索,位上有数字就跳过,如果没有就搜索:
A-B , A-C,
A-D

   B-A, B-C,
B-E, B-F

   C-A, C-B, C-D, C-F,
C-E,C-G

   D-A, D-C, D-F, D-G

   E-B, E-C, E-F, E-H

   F-C, F-D, F-G, F-H, F-E,
F-B

   G-D, G-C, G-F, G-H

   H-E, H-F, H-G

   A=1 B=2 C=3 D=4 E=5 F=6 G=7
H=8
每到一位的判断关系;
感悟:判断条件老是写不对,真是费劲啊
代码:
#include

#include

#include

#include

#include

#define maxn 10

using namespace std;

int pos[maxn],t,visit[maxn],ans=0,mark[maxn],p[maxn];



bool conect(int x,int y)

{

    if (x>y)
{int t=x; x=y; y=t;}

    switch
(x)

    {

       
case 1:return y==2 || y==3 || y==4;

       
case 2:return y==3 || y==5 || y==6;

       
case 3:return y==4 || y==5 || y==6 || y==7;

       
case 4:return y==6 || y==7;

       
case 5:return y==6 || y==8;

       
case 6:return y==7 || y==8;

       
case 7:return y==8;

    }

}

bool ok(int p)

{

    int i;

    for
(i=1;i<=8;i++)

       
if ((conect(i,p) && abs(pos[p]-pos[i])==1) &&
pos[i]!=0) return 0;

    return
1;

}



void dfs(int cur)

{

   
//cout<<cur<<" ";

   
if(ans>1)

       
return ;//剪枝大于2了就不需要在搜了

   
//cout<<"cur="<<cur<<endl;

   
while(cur<=8&&pos[cur]) cur++;//把0空过去

   
if(cur>8)

    {

       
ans++;

       
if(ans==1)//因为只有ans=1时才需要输出

           
memcpy(p,pos,sizeof(pos));//将整个数组转移过来

       
return;

    }

    for(int
i=1;i<=8;i++) if(!visit[i])

    {

       
//cout<<cur<<endl;

       
//cout<<i<<" ";

       
visit[i]=1;

       
pos[cur]=i;

       
if(ok(cur))//相邻的不是相邻的数

           
dfs(cur+1);

       
pos[cur]=0;//原来这里就是零的

       
visit[i]=0;//释放标记,用于下一次搜索;

       
if(ans>1)

           
return;

    }

}

int main()

{

   
//freopen("in.txt", "r", stdin);

    int
flag=0;

   
scanf("%d",&t);

    for(int
i=1;i<=t;i++)

    {

       
ans=0;

       
memset(pos,0,sizeof(pos));

       
memset(visit,0,sizeof(visit));

       
for(int j=1;j<=8;j++)

       
{

           
scanf("%d",&pos[j]);

           
visit[pos[j]]=1;

       
}

       
dfs(1);

       
//cout<<"ans="<<ans<<endl;

       
printf("Case %d: ",i);

       
if(!ans)

           
printf("No answer");

       
else if(ans==1)

           
for(int i=1;i<=8;i++)

               
printf(i==1?"%d":" %d",p[i]);

       
else

           
printf("Not unique");

       
printf("\n");

    }

}

Another Eight Puzzle的更多相关文章

  1. Puzzle 面向服务/切面(AOP/IOC)开发框架 For .Net

    Puzzle 面向服务/切面AOP开发框架 For .Net AOP主要实现的目的是针对业务处理过程中的切面进行提取,它所面对的是处理过程中的某个步骤或阶段,以获得逻辑过程中各部分之间低耦合性的隔离效 ...

  2. HDU5456 Matches Puzzle Game(DP)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5456 Description As an exciting puzzle game for ...

  3. one recursive approach for 3, hdu 1016 (with an improved version) , permutations, N-Queens puzzle 分类: hdoj 2015-07-19 16:49 86人阅读 评论(0) 收藏

    one recursive approach to solve hdu 1016, list all permutations, solve N-Queens puzzle. reference: t ...

  4. poj3678 Katu Puzzle 2-SAT

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6714   Accepted: 2472 Descr ...

  5. POJ1651Multiplication Puzzle[区间DP]

    Multiplication Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8737   Accepted:  ...

  6. codeforce B Island Puzzle

    B. Island Puzzle time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  7. poj 1651 Multiplication Puzzle (区间dp)

    题目链接:http://poj.org/problem?id=1651 Description The multiplication puzzle is played with a row of ca ...

  8. Ignatius's puzzle

    Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. A hard puzzle

    A hard puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  10. hdu 1097 A hard puzzle

    Problem Description lcy gives a hard puzzle to feng5166,lwg,JGShining and Ignatius: gave a and b,how ...

随机推荐

  1. 微软云linux服务器FTP文件传输错误解决办法

    在微软云上新建了linux虚拟机之后,通过Xshell连接到服务器(微软云默认的账号是:azureuser,不是root),却发现通过FTP传输文件错误,一直找不到头绪,询问微软云相关人员才知道.FT ...

  2. 两句话动态修改table数据并提交到后台

    //为所有的input 添加click事件,我将对象的id放入到name属性中,行数放入到alt属性中 $("input").click(function(obj){ //获得当前 ...

  3. [js高手之路] html5 canvas系列教程 - 线条样式(lineWidth,lineCap,lineJoin,setLineDash)

    上文,写完弧度与贝塞尔曲线[js高手之路] html5 canvas系列教程 - arcTo(弧度与二次,三次贝塞尔曲线以及在线工具),本文主要是关于线条的样式设置 lineWidth: 设置线条的宽 ...

  4. 18.Llinux-触摸屏驱动(详解)

    本节的触摸屏驱动也是使用之前的输入子系统 1.先来回忆之前第12节分析的输入子系统 其中输入子系统层次如下图所示, 其中事件处理层的函数都是通过input_register_handler()函数注册 ...

  5. Clojure——学习迷宫生成

    背景 初学clojure,想着看一些算法来熟悉clojure语法及相关算法实现. 找到一个各种语言生成迷宫的网站:http://rosettacode.org/wiki/Maze_generation ...

  6. 点聚合功能---基于ARCGIS RUNTIME SDK FOR ANDROID

    一直不更新博客的原因,如果一定要找一个,那就是忙,或者说懒癌犯了. 基于ArcGIS RunTime SDK for Android的点聚合功能,本来是我之前做过的一个系统里面的一个小部分,今天抽出一 ...

  7. PyCharm基本操作

    1.1 PyCharm基本使用 视频学习连接地址:http://edu.51cto.com/course/9043.html 1.1.1 在Pycharm下为你的Python项目配置Python解释器 ...

  8. Ubuntu中MongoDB安装

    在Ubuntu中MongoDB有时候启动不起来,可以参考以下方法从新安装: 1.导入包管理系统使用的公钥 Ubuntu 的软件包管理工具(即dpkg和APT)要求软件包的发布者通过GPG密钥签名来确保 ...

  9. ASP.NET/MVC 配置log4net启用写错误日志功能

    <?xml version="1.0" encoding="utf-8"?> <!-- 有关如何配置 ASP.NET 应用程序的详细信息,请访 ...

  10. haproxy + keepalived 实现网站高可靠

    haproxy 1的配置文件,包括 keepalived 和 haproxy 的配置,分别如下: [haproxy 1的keepalived 配置文件]  /etc/keepalived/keepal ...