Slim Span(Kruskal)
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 7227 | Accepted: 3831 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree Tis defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges arew(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb,Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
n | m | |
a1 | b1 | w1 |
⋮ | ||
am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
介绍一下kruskal算法:
这个算法是基于并查集的,每次从图中未加入树种的边种找到边权最小的看,这两个点的祖先是否是一个,如果是一个说明两个点已经是一个树上的了,不做操作,如果两个点来自不同的树即有不同的祖先,那么就把这两个点所代表的两个树合并起来,最后当所有的点都在一棵树上的时候停止操作,一般用合并次数来控制,即n个点需要合并n-1次,所以最好合并操作写在kruskal函数内部,这样方便统计步数
下面是这个题的代码,一定要 注意点的编号是从1开始还是从0开始,wa了好多次
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = ;
const int INF = ;
struct Edge{
int from;
int to;
int w;
bool operator < (const Edge &a) const
{
return w<a.w;
}
}edge[N*N];
int fa[N];
int Getfa(int x){return (fa[x]==x)?x:fa[x] = Getfa(fa[x]); }
int fl;
int n,m;
bool solve(int x){
int cnt = ;//共合n-1次结束
for(int i = ; i <= n; i++) fa[i] = i;//注意点是从1开始编号的
for(int i = x; i < m; i++){
int X = Getfa(edge[i].from);
int Y = Getfa(edge[i].to);
if(X != Y){
fa[X] = Y;
cnt++;
if(cnt==n-){ fl = edge[i].w;return true;}
}
}
return false;
} int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n==&&m==) return ;
for(int i = ; i < m; i++)
{
scanf("%d%d%d",&edge[i].from,&edge[i].to,&edge[i].w);
}
sort(edge,edge+m);
int ans = INF;
for(int i = ; i < m; i++){
if(solve(i)) ans = min(ans,fl-edge[i].w);
}
if(ans==INF) puts("-1");
else printf("%d\n",ans);
}
return ;
}
Slim Span(Kruskal)的更多相关文章
- UVA1395 Slim Span(kruskal)
题目:Slim Span UVA 1395 题意:给出一副无向有权图,求生成树中最小的苗条度(最大权值减最小权值),如果不能生成树,就输出-1: 思路:将所有的边按权值有小到大排序,然后枚举每一条边, ...
- UVALive-3887 Slim Span (kruskal)
题目大意:定义无向图生成树的最大边与最小边的差为苗条度,找出苗条度最小的生成树的苗条度. 题目分析:先将所有边按权值从小到大排序,在连续区间[L,R]中的边如果能构成一棵生成树,那么这棵树一定有最小的 ...
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
- Uva1395 POJ3522 Slim Span (最小生成树)
Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...
- UVa 1395 Slim Span (最小生成树)
题意:给定n个结点的图,求最大边的权值减去最小边的权值最小的生成树. 析:这个和最小生成树差不多,从小到大枚举左端点,对于每一个左端点,再枚举右端点,不断更新最小值.挺简单的一个题. #include ...
- 最小生成树练习2(Kruskal)
两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...
- c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树
c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路 ...
- 最小生成树之克鲁斯卡尔(Kruskal)算法
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...
- 克鲁斯卡尔(Kruskal)算法
概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集 ...
随机推荐
- arcgis api for js实现克里金插值渲染图--不依赖GP服务
本篇的亮点是利用kriging.js结合arcgis api for js,实现克里金插值渲染图,截图如下: 具体实现的思路如下: 1.kriging.js开源js,可以实现针对容器canvas克里金 ...
- Mockplus设计大赛获奖选手专访 | High音:轻松生活,随心嗨音
"看似低调,实则高调的设计,UI设计是用了功力,主页功能和内容一览无余,方便用户选择,金字黑底,给予用户极好的奢华体验.原来听歌也是一种视觉享受.创新性源于对听歌氛围的把握,大幅的图片,刺激 ...
- bzoj 4537 HNOI2016 最小公倍数
Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,-,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在有q个询问,每次询问给定四个参数u.v.a和b,请你 ...
- [数据清洗]- Pandas 清洗“脏”数据(二)
概要 了解数据 分析数据问题 清洗数据 整合代码 了解数据 在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的.我们尝试去理解数据的列/行.记录.数据格式.语义错误.缺失的条目以及错误的 ...
- 基于Dubbo的http自动测试工具分享
公司是采用微服务来做模块化的,各个模块之间采用dubbo通信.好处就不用提了,省略了之前模块间复杂的http访问.不过也遇到一些问题: PS: Github的代码示例还在整理中... 测试需要配合写消 ...
- css实现多行文本溢出显示省略号(…)全攻略
省略号在ie中可以使用text-overflow:ellipsis了,但有很多的浏览器都需要固定宽度了,同时ff这些浏览器并不支持text-overflow:ellipsis设置了,下文来给各位整理一 ...
- ASP.NET Core读取AppSettings
http://www.tuicool.com/articles/rQruMzV 今天在把之前一个ASP.NET MVC5的Demo项目重写成ASP.NET Core,发现原先我们一直用的Configu ...
- Vue 爬坑之路(九)—— 用正确的姿势封装组件
迄今为止做的最大的 Vue 项目终于提交测试,天天加班的日子终于告一段落... 在开发过程中,结合 Vue 组件化的特性,开发通用组件是很基础且重要的工作 通用组件必须具备高性能.低耦合的特性 为了满 ...
- CSS预编译器less简单用法
1.变量 定义变量 @变量名:值; @test_width:100px; 使用变量 .box{ width:@test_width; height:@test_width; background-co ...
- 移动端H5页面惯性滑动监听
移动端H5页面惯性滑动监听 在移动端,当你快速滑动有滚动条的页面时,当你手指离开屏幕时,滚动条并不会立即停止,而是会随着"惯性"继续滑动一段距离. 在做项目的过程中,需要监听惯性滑 ...