Slim Span(Kruskal)
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 7227 | Accepted: 3831 |
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree Tis defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges arew(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb,Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
| n | m | |
| a1 | b1 | w1 |
| ⋮ | ||
| am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
介绍一下kruskal算法:
这个算法是基于并查集的,每次从图中未加入树种的边种找到边权最小的看,这两个点的祖先是否是一个,如果是一个说明两个点已经是一个树上的了,不做操作,如果两个点来自不同的树即有不同的祖先,那么就把这两个点所代表的两个树合并起来,最后当所有的点都在一棵树上的时候停止操作,一般用合并次数来控制,即n个点需要合并n-1次,所以最好合并操作写在kruskal函数内部,这样方便统计步数
下面是这个题的代码,一定要 注意点的编号是从1开始还是从0开始,wa了好多次
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = ;
const int INF = ;
struct Edge{
int from;
int to;
int w;
bool operator < (const Edge &a) const
{
return w<a.w;
}
}edge[N*N];
int fa[N];
int Getfa(int x){return (fa[x]==x)?x:fa[x] = Getfa(fa[x]); }
int fl;
int n,m;
bool solve(int x){
int cnt = ;//共合n-1次结束
for(int i = ; i <= n; i++) fa[i] = i;//注意点是从1开始编号的
for(int i = x; i < m; i++){
int X = Getfa(edge[i].from);
int Y = Getfa(edge[i].to);
if(X != Y){
fa[X] = Y;
cnt++;
if(cnt==n-){ fl = edge[i].w;return true;}
}
}
return false;
} int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n==&&m==) return ;
for(int i = ; i < m; i++)
{
scanf("%d%d%d",&edge[i].from,&edge[i].to,&edge[i].w);
}
sort(edge,edge+m);
int ans = INF;
for(int i = ; i < m; i++){
if(solve(i)) ans = min(ans,fl-edge[i].w);
}
if(ans==INF) puts("-1");
else printf("%d\n",ans);
}
return ;
}
Slim Span(Kruskal)的更多相关文章
- UVA1395 Slim Span(kruskal)
题目:Slim Span UVA 1395 题意:给出一副无向有权图,求生成树中最小的苗条度(最大权值减最小权值),如果不能生成树,就输出-1: 思路:将所有的边按权值有小到大排序,然后枚举每一条边, ...
- UVALive-3887 Slim Span (kruskal)
题目大意:定义无向图生成树的最大边与最小边的差为苗条度,找出苗条度最小的生成树的苗条度. 题目分析:先将所有边按权值从小到大排序,在连续区间[L,R]中的边如果能构成一棵生成树,那么这棵树一定有最小的 ...
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
- Uva1395 POJ3522 Slim Span (最小生成树)
Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...
- UVa 1395 Slim Span (最小生成树)
题意:给定n个结点的图,求最大边的权值减去最小边的权值最小的生成树. 析:这个和最小生成树差不多,从小到大枚举左端点,对于每一个左端点,再枚举右端点,不断更新最小值.挺简单的一个题. #include ...
- 最小生成树练习2(Kruskal)
两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...
- c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树
c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路 ...
- 最小生成树之克鲁斯卡尔(Kruskal)算法
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...
- 克鲁斯卡尔(Kruskal)算法
概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集 ...
随机推荐
- JDK 1.8 源码阅读和理解
根据 一篇文章教会你,如何做到招聘要求中的“要有扎实的Java基础” 的指引,决定开始阅读下JDK源码. 本文将作为源码阅读总纲 一.精读部分 java.io java.lang java.util ...
- Visual simultaneous localization and mapping: a survey 论文解析(全)
当激光或声纳等距离传感器被用来构建小的静态环境的二维地图时,SLAM的问题被认为是解决的.然而,对于动态,复杂和大规模的环境,使用视觉作为唯一的外部传感器,SLAM是一个活跃的研究领域. 第一部分是简 ...
- 简单工厂(Simple Factory),最合适的设计模式首秀.
简单工厂又称为静态工厂方法(static factory method)模式,简单工厂是由一个工厂来决定创建出哪一种个体的实现,在很多的讨论中,简单工厂做为工厂方法模式(Factory Method) ...
- tr 命令详解
tr 作用:标准输入中通过替换或删除操作进行字符转换 语法:tr -c -d -s ["string1_to_translate_from"] ["string2_to ...
- 【转】String Date Calendar之间的转换
1.Calendar 转化 String Calendar calendat = Calendar.getInstance(); SimpleDateFormat sdf = new SimpleDa ...
- ASP.NET网页发布以及相关问题的解决
今天做了一个统计站点的网页,想要发布一下,中间碰到不少问题,现在和大家分享一下! 这是我想要最终的网页结果: 1.发布站点到桌面(任意路径) 2.安装IIS 3.安装好后,打开IIS, ...
- dubbo源码—dubbo简介
dubbo是一个RPC框架,应用方像使用本地service一样使用dubbo service.dubbo体系架构 上图中的角色: 最重要的是consumer.registry和provider con ...
- 页面刷新vuex数据消失问题解决方案 之 vuex中间件
之前我写了一篇用ES6 Proxy方案解决数据同步的文章 页面刷新vuex数据消失问题解决方案. 今天和同事沟通这个vuex数据还原问题,我说我的方法很奇异.聊着聊着,同事咋不用 store.sub ...
- 【软件】关于Notepad++(32位)
1.Notepad++安装包 简介:NotePad++是一个轻量级的代码编辑器,占用内存少,运行速度快. 官网网址:https://notepad-plus-plus.org/ 百度网盘:https: ...
- Redis学习笔记(三)Redis支持的5种数据类型的总结
继续Redis学习笔记(二)来说说剩余的三种数据类型. 三.列表类型(List) 1.介绍 列表类型可以存储一个有序的字符串列表,常用的操作是向列表两端添加元素,或者获得列表的一段片段.列表类型内部是 ...