Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 7227   Accepted: 3831

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree Tis defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges arew(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb,Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50
 
题意:
一个图可能会构成多个生成树,那么求其中生成树中最小的一条边与最大的一条边之差最小的是多少。
 
 
题解:
这题虽然不是求最小生成树,但是也很类似。 按照Kruskal的方法,把所有边排序,然后依次枚举最小边,开始构造生成树,取差值最小的便是。

 介绍一下kruskal算法:

这个算法是基于并查集的,每次从图中未加入树种的边种找到边权最小的看,这两个点的祖先是否是一个,如果是一个说明两个点已经是一个树上的了,不做操作,如果两个点来自不同的树即有不同的祖先,那么就把这两个点所代表的两个树合并起来,最后当所有的点都在一棵树上的时候停止操作,一般用合并次数来控制,即n个点需要合并n-1次,所以最好合并操作写在kruskal函数内部,这样方便统计步数

下面是这个题的代码,一定要 注意点的编号是从1开始还是从0开始,wa了好多次

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = ;
const int INF = ;
struct Edge{
int from;
int to;
int w;
bool operator < (const Edge &a) const
{
return w<a.w;
}
}edge[N*N];
int fa[N];
int Getfa(int x){return (fa[x]==x)?x:fa[x] = Getfa(fa[x]); }
int fl;
int n,m;
bool solve(int x){
int cnt = ;//共合n-1次结束
for(int i = ; i <= n; i++) fa[i] = i;//注意点是从1开始编号的
for(int i = x; i < m; i++){
int X = Getfa(edge[i].from);
int Y = Getfa(edge[i].to);
if(X != Y){
fa[X] = Y;
cnt++;
if(cnt==n-){ fl = edge[i].w;return true;}
}
}
return false;
} int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n==&&m==) return ;
for(int i = ; i < m; i++)
{
scanf("%d%d%d",&edge[i].from,&edge[i].to,&edge[i].w);
}
sort(edge,edge+m);
int ans = INF;
for(int i = ; i < m; i++){
if(solve(i)) ans = min(ans,fl-edge[i].w);
}
if(ans==INF) puts("-1");
else printf("%d\n",ans);
}
return ;
}

Slim Span(Kruskal)的更多相关文章

  1. UVA1395 Slim Span(kruskal)

    题目:Slim Span UVA 1395 题意:给出一副无向有权图,求生成树中最小的苗条度(最大权值减最小权值),如果不能生成树,就输出-1: 思路:将所有的边按权值有小到大排序,然后枚举每一条边, ...

  2. UVALive-3887 Slim Span (kruskal)

    题目大意:定义无向图生成树的最大边与最小边的差为苗条度,找出苗条度最小的生成树的苗条度. 题目分析:先将所有边按权值从小到大排序,在连续区间[L,R]中的边如果能构成一棵生成树,那么这棵树一定有最小的 ...

  3. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  4. Uva1395 POJ3522 Slim Span (最小生成树)

    Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...

  5. UVa 1395 Slim Span (最小生成树)

    题意:给定n个结点的图,求最大边的权值减去最小边的权值最小的生成树. 析:这个和最小生成树差不多,从小到大枚举左端点,对于每一个左端点,再枚举右端点,不断更新最小值.挺简单的一个题. #include ...

  6. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  7. c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树

    c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路 ...

  8. 最小生成树之克鲁斯卡尔(Kruskal)算法

    学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...

  9. 克鲁斯卡尔(Kruskal)算法

    概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集 ...

随机推荐

  1. Keras的安装与配置

    Keras是由Python编写的基于Tensorflow或Theano的一个高层神经网络API.具有高度模块化,极简,可扩充等特性.能够实现简易和快速的原型设计,支持CNN和RNN或者两者的结合,可以 ...

  2. 为什么CPU需要时钟这种概念?

    本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/132 最近在研究计算机里的基本逻辑电路,想到一个问题:为什么CP ...

  3. CDH的安装

    环境5台装有centos 6.9系统的服务器 1.网络配置 sudo vi /etc/sysconfig/network修改hostname: NETWORKING=yes HOSTNAME=ZXXS ...

  4. js scrollTop 事件

    代码: window.onscroll = function() { var t = document.documentElement.scrollTop || document.body.scrol ...

  5. Ubuntu中启用ssh服务---转载

    ssh程序分为有客户端程序openssh-client和服务端程序openssh-server.如果需要ssh登陆到别的电脑,需要安装openssh-client,该程序Ubuntu是默认安装的.而如 ...

  6. 阅读MDN文档之层叠与继承(二)

    目录 The cascade Importance Specificity Source order A note on rule mixing Inheritance Controlling inh ...

  7. javascript中对象字面量与数组字面量

    第一部分 我们知道JavaScript中的数据类型有基本数据类型和引用类型,其中Object类型就是非常常用的类型.那么如果创建一个Object类型的实例呢?下面我介绍两种方法: 第一:构造函数法. ...

  8. 使用linux perf工具生成java程序火焰图

    pre.cjk { font-family: "Nimbus Mono L", monospace } p { margin-bottom: 0.1in; line-height: ...

  9. Python的伪私有属性

    什么是伪私有属性? 在Python中,没有类似 private 之类的关键字来声明私有方法或属性. Python中要声明私有属性,需要在属性前加上双下划线(但是结尾处不能有双下划线),如:self._ ...

  10. python基础(三)编码,深浅copy

    编码,深浅copy encode,decode在python2中使用的一些迷糊,python3中更容易理解 要理解encode和decode,首先我们要明白编码,字符和二进制的相关概念,简单来说,计算 ...