[CF576E] Painting Edges 题解
模版题的升级了。
使用二分图经典判定方法(一个点拆成两个点 \(x,x+n\),连边 \((x,y)\) 就是连接 \((x,y+n),(x+n,y)\),那么是否是二分图就等价于判断 \(x,x+n\) 是否都不在一个集合内),预处理出每个操作的 \(e_i\) 下一次出现的位置 \(nx_i\),每一次修改边相当于给 \((i,nx_i)\) 这个区间内的 \(c_i\) 颜色加了 \(e_i\) 这条边,那就是经典线段树分治了。
时间复杂度 \(O(n\log^2n\log k)\)。
#include<bits/stdc++.h>
using namespace std;
const int N=5e7+5,M=5e5+5;
int n,m,k,fa[N],sz[N],xc[M],yc[M];
int q,ls[M],nx[M],eg[M],c[M],lc[M];
inline int idx(int x,int cl){
return (cl-1)*2*n+x;
}struct mer{
int sz,x,y;
};stack<mer>st;
struct ed{
int x,y;
};vector<ed>g[4*M];
inline void init(){
for(int i=1;i<=2*n*k;i++)
fa[i]=i,sz[i]=1;
}inline int find(int x){
return fa[x]==x?x:find(fa[x]);
}inline void unite(int x,int y){
x=find(x),y=find(y);
if(x==y) return;
if(sz[x]<sz[y]) swap(x,y);
st.push({sz[x],x,y});
fa[y]=x,sz[x]+=sz[y];
}inline void chg(int x,int l,int r,int L,int R,ed e){
if(L>R) return;
if(L<=l&&r<=R){
g[x].push_back(e);
return;
}int mid=(l+r)/2;
if(L<=mid) chg(x*2,l,mid,L,R,e);
if(R>mid) chg(x*2+1,mid+1,r,L,R,e);
}inline void solve(int x,int l,int r){
int ans=1,ltp=st.size();
for(auto e:g[x]) unite(e.x,e.y);
int mid=(l+r)/2;
if(l!=r){
solve(x*2,l,mid);
solve(x*2+1,mid+1,r);
}else{
int xa=idx(xc[eg[l]],c[l]);
int ya=idx(yc[eg[l]],c[l]);
int xb=idx(xc[eg[l]]+n,c[l]);
int yb=idx(yc[eg[l]]+n,c[l]);
int xl=idx(xc[eg[l]],lc[eg[l]]);
int yl=idx(yc[eg[l]],lc[eg[l]]);
int xr=idx(xc[eg[l]]+n,lc[eg[l]]);
int yr=idx(yc[eg[l]]+n,lc[eg[l]]);
if(find(xa)==find(ya)){
if(lc[eg[l]]){
chg(1,1,q,l+1,nx[l],{xl,yr});
chg(1,1,q,l+1,nx[l],{xr,yl});
}cout<<"NO\n";
}else{
cout<<"YES\n",lc[eg[l]]=c[l];
chg(1,1,q,l+1,nx[l],{xa,yb});
chg(1,1,q,l+1,nx[l],{xb,ya});
}
}while(st.size()>ltp){
mer x=st.top();st.pop();
fa[x.y]=x.y,sz[x.x]=x.sz;
}
}int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m>>k>>q,init();
for(int i=1;i<=m;i++)
cin>>xc[i]>>yc[i];
for(int i=1;i<=q;i++){
cin>>eg[i]>>c[i];
nx[ls[eg[i]]]=i-1;
nx[ls[eg[i]]=i]=q;
}solve(1,1,q);
return 0;
}
[CF576E] Painting Edges 题解的更多相关文章
- CF938G Shortest Path Queries 和 CF576E Painting Edges
这两道都用到了线段树分治和按秩合并可撤销并查集. Shortest Path Queries 给出一个连通带权无向图,边有边权,要求支持 q 个操作: x y d 在原图中加入一条 x 到 y 权值为 ...
- CF576E Painting Edges
首先,有一个很暴力的nk的做法,就是对每种颜色分别开棵lct来维护. 实际上,有复杂度与k无关的做法. 感觉和bzoj4025二分图那个题的区别就在于这个题是边dfs线段树边拆分区间.
- 【CF576E】Painting Edges 线段树按时间分治+并查集
[CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...
- 【Codeforces576E_CF576E】Painting Edges(可撤销并查集+线段树分治)
题目 CF576E 分析: 从前天早上肝到明天早上qwq其实颓了一上午MC ,自己瞎yy然后1A,写篇博客庆祝一下. 首先做这题之前推荐一道很相似的题:[BZOJ4025]二分图(可撤销并查集+线段树 ...
- Codeforces 576E Painting Edges [分治,并查集]
洛谷 Codeforces 建议阅读这篇博客作为预备.无耻地打广告 思路 与bzoj4025很相似,思路也差不多,可以看上面那篇博客. 仍然是用二分图的充要条件:没有奇环. 然而这题难在每条边的存在时 ...
- Codeforces Round 319 # div.1 & 2 解题报告
Div. 2 Multiplication Table (577A) 题意: 给定n行n列的方阵,第i行第j列的数就是i*j,问有多少个格子上的数恰为x. 1<=n<=10^5, 1< ...
- CF数据结构练习
1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- LeetCode 323. Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- AGC033 D~F——[ 值放到角标的DP ][ 思路+DP ][ 思路 ]
地址:https://atcoder.jp/contests/agc033/ D Complexity dp[ i ][ j ][ k ][ l ] 表示左上角是 ( i , j ) .右下角是 ( ...
随机推荐
- WPF下,控件未响应鼠标属性触发器
WPF下,控件未响应鼠标属性触发器 记一次自定义控件调试 问题现象 问题分析 解决方式 记一次自定义控件调试 使用WPF写了个自定义控件,其中有个Button按钮,重写了样式模板 <Button ...
- uni-app onReachBottom钩子触发问题
前情 uni-app是我很喜欢的跨平台框架,它能开发小程序,H5,APP(安卓/iOS),对前端开发很友好,自带的IDE让开发体验也很棒,公司项目就是主推uni-app. 最近有多个需求,页面滚动到底 ...
- R数据分析:PLS结构方程模型介绍,论文报告方法和实际操作
前面给大家写的关于结构方程模型的文章都是基于变量的方差协方差矩阵来探讨变量间关系的,叫做covariance-based SEM,今天给大家介绍一下另外一个类型的SEM,叫做偏最小二乘结构方差模型.一 ...
- 使用 .NET 的 Dev Proxy 构建和测试弹性应用
使用 .NET 的 Dev Proxy 构建和测试弹性应用 https://devblogs.microsoft.com/dotnet/build-test-resilient-apps-dotnet ...
- win10 ocx控件注册失败的解决办法
首先注意:ocx放在大部分系统目录无法注册,比如program file ,但windows目录可以. 第一步:关闭防火墙 第二步:确定是否缺少控件运行需要的微软运行库或其他运行环境 这里提供一个挺全 ...
- 【Java】【Maven】002 修改maven仓库的路径与配置阿里云镜像仓库
[Java][Maven]001 下载与配置环境 - 萌狼蓝天 - 博客园 (cnblogs.com/mllt) 修改maven仓库的路径 maven指定的本地仓库的默认位置是在c盘,默认在:C:\U ...
- Netty内存池泄漏问题
为了提升消息接收和发送性能,Netty针对ByteBuf的申请和释放采用池化技术,通过PooledByteBufAllocator可以创建基于内存池分配的ByteBuf对象,这样就避免了每次消息读写都 ...
- 龙哥量化:通达信的函数ma均线,ema、sma、dma的计算原理是什么,XMA是未来函数
注意均线也有未来函数,常见的是跨周期的用法,会导致信号闪烁, 不常见的是XMA这个未来函数太坑了, [代写公式,龙哥微信:Long622889] MA.EMA.SMA.DMA.TMA.WMA6种平均算 ...
- 『AutoHotkey』 效率提升「脚本集」
AutoHotkey 效率提升脚本集 一些实用的 AutoHotkey 脚本示例,这些可以显著提升工作效率. #Requires AutoHotkey v2.0 ; 1. 快速启动常用程序 ^!n:: ...
- Windows应用开发-常用工具集推荐
.NET/WPF开发 Visual Studio 最新版本是VS2022,官网下载:Visual Studio 2022 IDE - 适用于软件开发人员的编程工具 VsColorOutput 控制台 ...